傅里叶变换、傅里叶级数的介绍

傅里叶变换的介绍

傅里叶变换

简介

傅里叶变换(fourier transform)是一种线性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。

经傅里叶变换生成的函数 f ^ \hat{f} f^ 称作原函数 f f f的傅里叶变换,亦称频谱。在许多情况下,傅里叶变换是可逆的,即可通过 f ^ \hat{f} f^得到其原函数 f f f。通常情况下, f f f 是实数函数,而 f ^ \hat{f} f^则是复数函数,用一个复数来表示振幅和相位。

“傅里叶变换”一词既指变换操作本身将函数 f f f进行傅里叶变换,又指该操作所生成的复数函数 f ^ \hat{f} f^ f f f的傅里叶变换。

定义

傅里叶变换(FT):
f ^ ( ξ ) = ∫ − ∞ ∞ f ( x ) e − 2 π i x ξ d x , ξ ∈ R \hat{f}(\xi)=\int _{-\infty}^{\infty}f(x)e^{-2\pi ix\xi}dx,\xi\in\mathbb{R} f^(ξ)=f(x)e2πixξdx,ξR自变量x表示时间(以秒为单位),变换变量ξ表示频率(以赫兹为单位)。

傅里叶逆变换(IFT):
f ( x ) = ∫ − ∞ ∞ f ^ ( ξ ) e 2 π i ξ x d ξ , x ∈ R f(x)=\int _{-\infty}^{\infty}\hat{f}(\xi)e^{2\pi i\xi x}d\xi,x\in\mathbb{R} f(x)=f^(ξ)e2πiξxdξ,xR

傅里叶级数

假定 f ( x ) f(x) f(x)为以 2 π 2\pi 2π为周期的函数,则傅里叶级数为:
f ( x ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ ( n x ) + b n sin ⁡ ( n x ) ] f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}[a_n\cos(nx)+b_n\sin(nx)] f(x)=2a0+n=1[ancos(nx)+bnsin(nx)]
其中,
{ a 0 = 1 π ∫ 0 2 π f ( x ) d x , a n = 1 π ∫ 0 2 π f ( x ) cos ⁡ n x d x , b n = 1 π ∫ 0 2 π f ( x ) sin ⁡ n x d x . \begin{cases} a_0=\frac{1}{\pi}\int_0^{2\pi}f(x)dx,\\ a_n=\frac{1}{\pi}\int_0^{2\pi}f(x)\cos{nx}dx,\\ b_n=\frac{1}{\pi}\int_0^{2\pi}f(x)\sin{nx}dx. \end{cases} a0=π102πf(x)dx,an=π102πf(x)cosnxdx,bn=π102πf(x)sinnxdx.
我们知道由欧拉公式( e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos{\theta}+i\sin{\theta} eiθ=cosθ+isinθ)知,
f ( x ) = a 0 2 + ∑ n = 1 ∞ [ a n e i n x + e − i n x 2 + b n e i n x − e − i n x 2 i ] f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}[a_n\frac{e^{inx}+e^{-inx}}{2}+b_n\frac{e^{inx}-e^{-inx}}{2i}] f(x)=2a0+n=1[an2einx+einx+bn2ieinxeinx]

f ( x ) = a 0 2 + ∑ n = 1 ∞ [ 1 2 ( a n − i b n ) e i n x + 1 2 ( a n + i b n ) e − i n x ] f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}[\frac{1}{2}(a_n-ib_n)e^{inx}+\frac{1}{2}(a_n+ib_n)e^{-inx}] f(x)=2a0+n=1[21(anibn)einx+21(an+ibn)einx]
其中,
{ a 0 = 1 π ∫ 0 2 π f ( x ) d x , a n = 1 π ∫ 0 2 π f ( x ) e − i n x d x , b n = 1 π ∫ 0 2 π f ( x ) e i n x d x . \begin{cases} a_0=\frac{1}{\pi}\int_0^{2\pi}f(x)dx,\\ a_n=\frac{1}{\pi}\int_0^{2\pi}f(x)e^{-inx}dx,\\ b_n=\frac{1}{\pi}\int_0^{2\pi}f(x)e^{inx}dx. \end{cases} a0=π102πf(x)dx,an=π102πf(x)einxdx,bn=π102πf(x)einxdx.
化简得,
f ( x ) = ∑ − ∞ ∞ f ^ ( n ) e i n x , f(x)=\sum\limits_{-\infty}^{\infty}\hat{f}(n)e^{inx}, f(x)=f^(n)einx,
f ^ ( n ) = 1 2 π ∫ 0 2 π f ( x ) e − i n x d x . \hat{f}(n)=\frac{1}{2\pi}\int_{0}^{2\pi}f(x)e^{-inx}dx. f^(n)=2π102πf(x)einxdx.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值