傅里叶变换
简介
傅里叶变换(fourier transform)是一种线性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。
经傅里叶变换生成的函数 f ^ \hat{f} f^ 称作原函数 f f f的傅里叶变换,亦称频谱。在许多情况下,傅里叶变换是可逆的,即可通过 f ^ \hat{f} f^得到其原函数 f f f。通常情况下, f f f 是实数函数,而 f ^ \hat{f} f^则是复数函数,用一个复数来表示振幅和相位。
“傅里叶变换”一词既指变换操作本身将函数 f f f进行傅里叶变换,又指该操作所生成的复数函数 f ^ \hat{f} f^是 f f f的傅里叶变换。
定义
傅里叶变换(FT):
f
^
(
ξ
)
=
∫
−
∞
∞
f
(
x
)
e
−
2
π
i
x
ξ
d
x
,
ξ
∈
R
\hat{f}(\xi)=\int _{-\infty}^{\infty}f(x)e^{-2\pi ix\xi}dx,\xi\in\mathbb{R}
f^(ξ)=∫−∞∞f(x)e−2πixξdx,ξ∈R自变量x表示时间(以秒为单位),变换变量ξ表示频率(以赫兹为单位)。
傅里叶逆变换(IFT):
f
(
x
)
=
∫
−
∞
∞
f
^
(
ξ
)
e
2
π
i
ξ
x
d
ξ
,
x
∈
R
f(x)=\int _{-\infty}^{\infty}\hat{f}(\xi)e^{2\pi i\xi x}d\xi,x\in\mathbb{R}
f(x)=∫−∞∞f^(ξ)e2πiξxdξ,x∈R
傅里叶级数
假定
f
(
x
)
f(x)
f(x)为以
2
π
2\pi
2π为周期的函数,则傅里叶级数为:
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
[
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
]
f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}[a_n\cos(nx)+b_n\sin(nx)]
f(x)=2a0+n=1∑∞[ancos(nx)+bnsin(nx)]
其中,
{
a
0
=
1
π
∫
0
2
π
f
(
x
)
d
x
,
a
n
=
1
π
∫
0
2
π
f
(
x
)
cos
n
x
d
x
,
b
n
=
1
π
∫
0
2
π
f
(
x
)
sin
n
x
d
x
.
\begin{cases} a_0=\frac{1}{\pi}\int_0^{2\pi}f(x)dx,\\ a_n=\frac{1}{\pi}\int_0^{2\pi}f(x)\cos{nx}dx,\\ b_n=\frac{1}{\pi}\int_0^{2\pi}f(x)\sin{nx}dx. \end{cases}
⎩⎪⎨⎪⎧a0=π1∫02πf(x)dx,an=π1∫02πf(x)cosnxdx,bn=π1∫02πf(x)sinnxdx.
我们知道由欧拉公式(
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta}=\cos{\theta}+i\sin{\theta}
eiθ=cosθ+isinθ)知,
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
[
a
n
e
i
n
x
+
e
−
i
n
x
2
+
b
n
e
i
n
x
−
e
−
i
n
x
2
i
]
f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}[a_n\frac{e^{inx}+e^{-inx}}{2}+b_n\frac{e^{inx}-e^{-inx}}{2i}]
f(x)=2a0+n=1∑∞[an2einx+e−inx+bn2ieinx−e−inx]
即
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
[
1
2
(
a
n
−
i
b
n
)
e
i
n
x
+
1
2
(
a
n
+
i
b
n
)
e
−
i
n
x
]
f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}[\frac{1}{2}(a_n-ib_n)e^{inx}+\frac{1}{2}(a_n+ib_n)e^{-inx}]
f(x)=2a0+n=1∑∞[21(an−ibn)einx+21(an+ibn)e−inx]
其中,
{
a
0
=
1
π
∫
0
2
π
f
(
x
)
d
x
,
a
n
=
1
π
∫
0
2
π
f
(
x
)
e
−
i
n
x
d
x
,
b
n
=
1
π
∫
0
2
π
f
(
x
)
e
i
n
x
d
x
.
\begin{cases} a_0=\frac{1}{\pi}\int_0^{2\pi}f(x)dx,\\ a_n=\frac{1}{\pi}\int_0^{2\pi}f(x)e^{-inx}dx,\\ b_n=\frac{1}{\pi}\int_0^{2\pi}f(x)e^{inx}dx. \end{cases}
⎩⎪⎨⎪⎧a0=π1∫02πf(x)dx,an=π1∫02πf(x)e−inxdx,bn=π1∫02πf(x)einxdx.
化简得,
f
(
x
)
=
∑
−
∞
∞
f
^
(
n
)
e
i
n
x
,
f(x)=\sum\limits_{-\infty}^{\infty}\hat{f}(n)e^{inx},
f(x)=−∞∑∞f^(n)einx,
f
^
(
n
)
=
1
2
π
∫
0
2
π
f
(
x
)
e
−
i
n
x
d
x
.
\hat{f}(n)=\frac{1}{2\pi}\int_{0}^{2\pi}f(x)e^{-inx}dx.
f^(n)=2π1∫02πf(x)e−inxdx.