论文题目: DeepFM: a factorization-machine based neural network for CTR prediction
论文地址: https://www.ijcai.org/proceedings/2017/0239.pdf
论文发表于: IJCAI 2017(CCF A类会议)
论文大体内容:
本文主要介绍了一种融合FM和DNN的模型——DeepFM模型,该模型主要思想就是把WDL模型的Wide层改为FM,并且共用特征embedding,不但能够学习一阶特征,还行自动的进行二阶特征组合,避免人工做特征工程,并且DeepFM的效果也比其他常见模型的效果好;
1. DeepFM主要贡献点:
①DNN+FM,不需要额外进行特征组合;
②通过共享输入数据和embedding的向量,使得模型能够既学习低维,也学习高维特征,而且训练还比较高效;
③在CTR任务上取得很好的效果;
2. DeepFM的整体网络结构如下图所示,包括FM部分和DNN部分,最后预测结果y=sigmoid(y_fm + y_dnn);
3. DeepFM的FM部分如下图;
4. DeepFM的DNN部分如下图;
5. 与常见的FNN、PNN、WDL模型对比如下;
实验
6. Dataset
7. Baseline
①LR;
②FM;
③FNN;
④PNN(3个变种);
⑤WDL(2个变种:LR+DNN,FM+DNN,都不共享低维和高维特征);
8. 评测方法
①AUC;
②Logloss;
9. 实验结果
10. 通过参数调整的实验,可以发现使用3个隐层、每个隐层维度一样、relu激活函数能取得更好的效果;
参考资料:
[1] https://blog.csdn.net/John159151/article/details/90751878
以上均为个人见解,因本人水平有限,如发现有所错漏,敬请指出,谢谢!