UNet的论文
U-Net: Convolutional Networks for Biomedical Image Segmentation | SpringerLink
首先,U-Net的卷积神经网络架构,最早它被用于生物医学图像分割任务。U-Net由Olaf Ronneberger, Philipp Fischer, 和 Thomas Brox在德国弗莱堡大学的计算机科学系和BIOSS生物信号研究中心开发。并不是为了图像生成而专门出现的一种技术。
结构大概是这样:
简单描述Unet到底做了个啥
U-Net结构本身做了一件非常重要的事情:它能够从图像中学习到每个像素应该属于哪个类别的信息。这就像是给图像中的每个像素贴上标签,告诉我们这个像素是背景、某个物体的一部分,还是图像中的其他元素。这个过程在计算机视觉领域被称为“图像分割”。
具体来说,U-Net通过以下几个步骤来完成这个任务:
-
捕获上下文信息:U-Net的收缩路径(左边的部分)通过一系列的卷积和池化操作,逐渐缩小图像的尺寸,同时增加特征的数量。这样做可以帮助网络理解图像的整体结构,就像是从远处看一幅画,可以快速捕捉到