Stable Diffusion中的UNet是什么?

UNet的论文

U-Net: Convolutional Networks for Biomedical Image Segmentation | SpringerLink

首先,U-Net的卷积神经网络架构,最早它被用于生物医学图像分割任务。U-Net由Olaf Ronneberger, Philipp Fischer, 和 Thomas Brox在德国弗莱堡大学的计算机科学系和BIOSS生物信号研究中心开发。并不是为了图像生成而专门出现的一种技术。

结构大概是这样:

简单描述Unet到底做了个啥

U-Net结构本身做了一件非常重要的事情:它能够从图像中学习到每个像素应该属于哪个类别的信息。这就像是给图像中的每个像素贴上标签,告诉我们这个像素是背景、某个物体的一部分,还是图像中的其他元素。这个过程在计算机视觉领域被称为“图像分割”。

具体来说,U-Net通过以下几个步骤来完成这个任务:

  1. 捕获上下文信息:U-Net的收缩路径(左边的部分)通过一系列的卷积和池化操作,逐渐缩小图像的尺寸,同时增加特征的数量。这样做可以帮助网络理解图像的整体结构,就像是从远处看一幅画,可以快速捕捉到

Stable Diffusion 是一种基于扩散模型的生成式人工智能技术,通常用于文本和图像内容的创造,尤其是高质量的自然语言描述和图像合成。以下是几种常见的 Stable Diffusion 模型: 1. **Diffusion Probabilistic Model (DPM)**: 这种模型的核心是一个概率过程,通过逐步增加噪声来将原始信号转化为最终的随机输出。在 Stable Diffusion 中,DPM 可能是指 UNet 或类似结构的解码器网络,用于从噪声样本恢复原始内容。 2. **Latent Diffusion Model (LDM)**: LDM 是对 DPM 的改进版本,它的工作原理是在潜在空间中进行扩散,使得模型能够更好地控制生成的内容并提高多样性。 3. **CLIP-guided Diffusion**: 结合了 CLIP( Contrastive Language-Image Pretraining)这样的预训练模型,这种变体允许用户通过文本提示指导生成的过程,提供更精确的指引。 4. **InstructGPT**: 类似于 DALL-E 2,它是基于类似架构但针对特定指令处理优化的模型,能够在给定上下文中生成相关的高质量内容。 5. **GLIDE**: 由 Stability AI 公司开发的一个知名模型,它擅长结合文本提示创建令人信服的图像,并支持更复杂的设计和插图任务。 6. **Chaos:** Facebook 的另一个项目,它也利用了类似的技术,提供了更强的创意灵活性和多样性。 每种模型都有其特点和应用场景,用户可以根据具体需求选择最适合的模型。对于更详细的信息或最新进展,建议查阅最新的研究论文和官方文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值