一文读懂「AIGC,AI Generated Content」AI生成内容

本文探讨了人工智能生成内容(AIGC)的概念,其应用领域广泛,包括游戏、广告营销、影视媒体等。文章详细分析了市场规模预测、技术发展(如Transformer架构)、产业图谱、应用案例、落地方式(如MaaS模型服务)、营收模式以及面临的机遇和挑战,列举了阿里云等标杆企业。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,让我们理解一下这两个概念。

  • AIGC,或者称之为人工智能生成内容,是指使用AI算法和模型来自动生成全新的、原创的内容。这种内容可以包括文本、图像、音频、视频等各种形式,甚至可以包括一些独特的形式,比如新颖的创意和设计。AIGC的应用领域非常广泛,包括但不限于写作、绘画、音乐创作、视频制作等。

  • 生成式AI,则是一种更广泛的概念。它指的是使用AI算法和模型来生成或者模拟某种特定的数据或现象。这种AI模型的学习和训练过程通常是基于大量的数据,从而使其能够模拟出真实世界中的某种行为或者现象。生成式AI的应用领域也非常广泛,包括但不限于自然语言处理、图像识别、语音合成等。

回头看完了补充进来:🔥 爆肝2W字!用奶奶都能看懂的文字带你了解AIGC的前世今生

一、什么是AIGC?

在这里插入图片描述

二、市场规模</

### RAG模型概述 RAG(Retrieval-Augmented Generation)是一种融合了检索增强机制的生成型语言模型,由Facebook AI研究院(FAIR)提出。这种架构通过结合传统的基于检索的方法和现代的语言生成技术来提升自然语言处理任务的效果[^3]。 ### 工作原理详解 #### 数据获取阶段 在数据准备过程中,RAG利用外部知识库作为补充资源。当接收到输入查询时,系统首先会在预先构建的知识图谱或其他形式的大规模语料库中执行信息检索操作,找到最有可能帮助完成当前对话或任务的相关片段。 #### 动态上下文集成 不同于静态预训练模式下的纯生成方式,在线检索到的具体实例会被即时融入到解码器端口处,使得每次预测都能依据最新获得的真实世界证据来进行调整优化。这一特性赋予了RAG更强的情境适应能力,尤其是在面对开放领域问答、多轮次交互式聊天等复杂场景下表现尤为突出。 #### 双重评分机制 为了确保最终输出的质量,RAG采用了两步走策略:先是从候选集中挑选出若干高质量的回答选项;再经过一轮精细评估后决定最佳回复方案。具体来说就是分别计算每条建议得分——一方面考量它与原始请求之间的匹配度;另一方面也要顾及内部连贯性和逻辑一致性等因素。 ```python def rag_model_inference(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_responses = [] for doc in retrieved_docs: response = generate_response_based_on_document(doc) generated_responses.append(response) best_response = select_best_response(generated_responses) return best_response ``` ### 应用案例分析 实际应用方面,《大模型RAG实战:RAG原理、应用与系统构建》一书中提供了丰富的实践指导和技术细节解析,涵盖了从理论基础到工程实现再到部署上线全流程的内容介绍。对于希望深入了解并掌握这项前沿技术的研究人员而言,这本书籍无疑是一个宝贵的学习资料来源[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值