模型蒸馏和知识蒸馏有什么区别和联系!

模型蒸馏(Model Distillation)和知识蒸馏(Knowledge Distillation)是紧密相关的概念,但在技术范畴和应用细节上存在一定差异。
在这里插入图片描述

一、核心定义

  1. 知识蒸馏(Knowledge Distillation, KD)

    • 狭义概念:特指通过迁移教师模型的“知识”(如输出概率分布、中间层特征等)来训练学生模型的方法,由Hinton等人在2015年提出。
    • 核心思想:学生模型模仿教师模型的软标签(Soft Targets),而非直接学习真实标签(Hard Labels)。
  2. 模型蒸馏(Model Distillation)

    • 广义概念:泛指将大模型(教师模型)的知识迁移到小模型(学生模型)的技术体系<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值