一、区分分类&预测
前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。
二、常见算法
(1)决策树算法
核心问题有两个:第一,决策树的生长,也即利用训练样本集完成决策树的建立过程。第二,决策树的剪枝,也即利用测试样本集对所形成的决策树进行精简。
(2)C5.0算法
三、友情链接
(1)数据挖掘中的分类与预测
https://blog.csdn.net/qq_20880939/article/details/79826625