酵母双杂交实验

1.酵母双杂交实验简介

酵母双杂交系统(Yeast two-hybrid system)是一种能够分析细胞内蛋白质互相作用的方法。该方法涉及融合到转录因子(“诱饵”)的DNA结合功能域(DNA binding domain,DNA-BD)的目标蛋白的表达,以及融合到转录激活结构域(activation domain,DNA-AD)[1](“猎物”)的单个靶蛋白或此类蛋白库的表达。诱饵与猎物蛋白的结合重新构建了功能性转录因子,并通过由携带同源DNA-BD位点的启动子控制的报告基因的表达进行检测[2]

酵母双杂交系统是一种用于鉴定编码蛋白质与目标蛋白质相互作用的新基因技术是第一个检测相互作用蛋白的遗传和分子方法。该系统在体内进行[3],可以检测天然结构中的相互作用蛋白因此在检测微弱和瞬时蛋白质相互作用方面具有很高的灵敏度。    

  1. 酵母双杂交实验的原理

 在酵母双杂交系统中,“诱饵”蛋白X克隆至DNA-BD载体中,被融合到DNA结合域(DBD)潜在的相互作用蛋白Y被融合到激活域(AD)上,表达AD/Y融合蛋白该结构被称为猎物。诱饵与猎物(即AD-Y融合蛋白)相互作用,则DNA-BD和AD也随之被牵拉靠近,从而重建一个功能性转录因子,恢复行使功能,激活报告重组体中LacZ和HIS3基因的表达。

作为一种基因技术,酵母双杂交筛选提供了一种敏感且经济的方法来测试两个目标蛋白之间的直接相互作用,或使用蛋白质作为诱饵来筛选从所需的细胞类型、组织或整个生物体制备的蛋白质片段库。通过测序所选酵母菌菌落中相应的质粒,确定相互作用。

1:酵母双杂交系统示意图[4]

3.酵母双杂交实验流程

(1)将待测基因与Gal4或LexA或其他合适蛋白的DNA结合域融合构建诱饵质粒;

(2)将诱饵质粒转化缺乏报告基因启动子的酵母细胞株中,选择被转化的酵母;

(3)再将文库质粒转化到酵母中;

(4)通过报告基因的功能筛选相互作用的蛋白[4]

4.酵母双杂交实验的应用和优点

(1)便宜、简单、多功能;(2)体内蛋白质相互作用分析;(3)由于使用酶作为报告基因提供的信号放大,该系统也非常灵敏,可以检测微弱甚至瞬态的相互作用;(4)可用于通过cDNA文库筛选鉴定新型相互作用蛋白;(5)多种变体允许多种应用;(6)可以通过自动化进行基因组规模的蛋白质相互作用图谱来扩大规模,以实现高通量筛选;(7)该方法测试活细胞中的蛋白质相互作用,不需要分离的蛋白质(只需要基因),并且相当容易执行。

参考文献

  1. Fields S, Song O. A novel genetic system to detect protein–protein interactions[J]. Nature, 1989, 340(6230): 245-246.
  2. Huang J, Schreiber S L. A yeast genetic system for selecting small molecule inhibitors of protein–protein interactions in nanodroplets[J]. Proceedings of the National Academy of Sciences, 1997, 94(25): 13396-13401.
  3. Iyer K, Burkle L, Auerbach D, et al. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins[J]. Science's STKE, 2005, 2005(275): pl3-pl3.
  4. David L. Nelson & Michael M. Cox.Lehninger Principles of Biochemistry SEVENTH EDITION.:W. H. Freeman and Company,2017.
数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值