Graph 聚合

下面所有博客是个人对EEG脑电的探索,项目代码是早期版本不完整,需要完整项目代码和资料请私聊。


数据集
1、脑电项目探索和实现(EEG) (上):研究数据集选取和介绍SEED
相关论文阅读分析:
1、EEG-SEED数据集作者的—基线论文阅读和分析
2、图神经网络EEG论文阅读和分析:《EEG-Based Emotion Recognition Using Regularized Graph Neural Networks》
3、EEG-GNN论文阅读和分析:《EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks》
4、论文阅读和分析:Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
5、论文阅读和分析:《DeepGCNs: Can GCNs Go as Deep as CNNs?》
6、论文阅读和分析: “How Attentive are Graph Attention Networks?”
7、论文阅读和分析:Simplifying Graph Convolutional Networks

8、论文阅读和分析:LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation

相关实验和代码实现:
1、用于图神经网络的脑电数据处理实现_图神经网络 脑电
2、使用GCN训练和测试EEG的公开SEED数据集
3、使用GAT训练和测试EEG公开的SEED数据集
4、使用SGC训练和测试SEED数据集
5、使用Transformer训练和测试EEG的公开SEED数据集_eeg transformer
6、使用RGNN训练和测试EEG公开的SEED数据集
辅助学习资料:
1、官网三个简单Graph示例说明三种层次的应用_graph 简单示例
2、PPI数据集示例项目学习图神经网络
3、geometric库的数据处理详解
4、NetworkX的dicts of dicts以及解决Seven Bridges of Königsberg问题
5、geometric源码阅读和分析:MessagePassin类详解和使用
6、cora数据集示例项目学习图神经网络
7、Graph 聚合
8、QM9数据集示例项目学习图神经网络
9、处理图的开源库

在图神经网络的消息传递框架和读出功能中,聚合函数起着重要的作用。具体而言,文献中(Hamilton et al. (2017), Xu et al. (2018), Corso et al. (2020), Li et al. (2020), Tailor et al.(2021))表明,聚集函数的选择对模型的表征能力和性能有显著影响。例如,平均聚合捕获元素的分布(或比例),最大聚合被证明有利于识别代表性元素,和聚合使结构图属性的学习成为可能(Xu et al.(2018))。最近的工作还表明,使用多重聚合(Corso等人(2020),Tailor等人(2021))和可学习聚合(Li等人(2020))可以潜在地提供实质性的改进。另一个研究方向是基于优化和隐式定义的聚合(Bartunov等人(2022))。此外,一个有趣的讨论涉及到表征能力(通常通过作为神经网络实现的可学习函数获得)和置换不变性的形式属性之间的权衡(Buterez et al.(2022))。

PyG提供了对各种聚合的支持,具体看torch_geometric.nn — pytorch_geometric documentation (pytorch-geometric.readthedocs.io)

1、基本使用

from torch_geometric.nn import aggr

# Simple aggregations:
mean_aggr = aggr.MeanAggregation()
max_aggr = aggr.MaxAggregation()

# Advanced aggregations:
median_aggr = aggr.MedianAggregation()

# Learnable aggregations:
softmax_aggr = aggr.SoftmaxAggregation(learn=True)
powermean_aggr = aggr.PowerMeanAggregation(learn=True)

# Exotic aggregations:
lstm_aggr = aggr.LSTMAggregation(in_channels=..., out_channels=...)
sort_aggr = aggr.SortAggregation(k=4)

2、在miniBatch使用

根据index,聚合,用于对miniBatch中聚合不同的子图,因为MiniBatch其实就是将子图做成一个大图。例如每个图x.shape=(10, 2),MiniBatch=16,则MiniBatch的x.shape=(16*10,2)。使用index索引向量定义了从输入元素到它们在输出中的位置的映射:

# Feature matrix holding 1000 elements with 64 features each:
x = torch.randn(1000, 64)

# Randomly assign elements to 100 sets:
index = torch.randint(0, 100, (1000, ))

# 通过index指出聚合的位置
output = mean_aggr(x, index)  #  Output shape: [100, 64]

3、可以用于MessagePassing和graph-level表示

import torch
from torch_geometric.nn import MessagePassing

# MessagePassing
class MyConv(MessagePassing):
    def __init__(self, ...):
        # Use a learnable softmax neighborhood aggregation:
        super().__init__(aggr=aggr.SoftmaxAggregation(learn=True))

   def forward(self, x, edge_index):
       ....

# graph-level
class MyGNN(torch.nn.Module)
    def __init__(self, ...):
        super().__init__()

        self.conv = MyConv(...)
        # Use a global sort aggregation:
        self.global_pool = aggr.SortAggregation(k=4)
        self.classifier = torch.nn.Linear(...)

     def foward(self, x, edge_index, batch):
         x = self.conv(x, edge_index).relu()
         x = self.global_pool(x, batch)
         x = self.classifier(x)
         return x
class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.lin0 = torch.nn.Linear(dataset.num_features, dim)

        nn = Sequential(Linear(5, 128), ReLU(), Linear(128, dim * dim))
        self.conv = NNConv(dim, dim, nn, aggr='mean')
        self.gru = GRU(dim, dim)

        self.set2set = Set2Set(dim, processing_steps=3)
        self.lin1 = torch.nn.Linear(2 * dim, dim)
        self.lin2 = torch.nn.Linear(dim, 1)

    def forward(self, data):
        out = F.relu(self.lin0(data.x))
        h = out.unsqueeze(0)

        for i in range(3):
            m = F.relu(self.conv(out, data.edge_index, data.edge_attr))
            out, h = self.gru(m.unsqueeze(0), h)
            out = out.squeeze(0)
        # (2325,64)
        out = self.set2set(out, data.batch)
        # (128,128)
        out = F.relu(self.lin1(out))
        out = self.lin2(out)
        return out.view(-1)

参考:

torch_geometric.nn — pytorch_geometric documentation (pytorch-geometric.readthedocs.io)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值