初等数论 3.1原根

定义:若 0 ≠ a ∈ Z , n ∈ Z + 0\neq a\in\Z,n\in\Z^+ 0̸=aZ,nZ+ ( a , n ) = 1 (a,n)=1 (a,n)=1,满足 a x ≡ 1 ( m o d n ) a^x\equiv 1\pmod n ax1(modn)成立的最小正整数称为 a a a n n n的阶,记为 o r d n a \mathrm{ord_n a} ordna.
定理:若 0 ≠ a ∈ Z , x , n ∈ Z + 0\neq a\in\Z,x,n\in\Z^+ 0̸=aZ,x,nZ+ ( a , n ) = 1 (a,n)=1 (a,n)=1,则 a x ≡ 1 ( m o d n ) a^x\equiv 1\pmod n ax1(modn)当且仅当 o r d n a ∣ x \mathrm{ord_n a}\mid x ordnax.

如果 o r d n a ∣ x \mathrm{ord_n a}\mid x ordnax,那么 x = k ⋅ o r d n a k ∈ Z + x=k\cdot \mathrm{ord_n a} \quad k\in\Z^+ x=kordnakZ+,所以 a x = a k ⋅ o r d n a = ( a o r d n a ) k ≡ 1 ( m o d n ) \displaystyle a^x=a^{k\cdot \mathrm{ord_n a}}=(a^{\mathrm{ord_n a}})^k\equiv 1\pmod n ax=akordna=(aordna)k1(modn) a x ≡ 1 ( m o d n ) a^x\equiv 1\pmod n ax1(modn),使用带余除法: x = q ⋅ o r d n a + r 0 ≤ r &lt; o r d n a x=q\cdot \mathrm{ord_n a}+r \quad 0\le r &lt; \mathrm{ord_n a} x=qordna+r0r<ordna从而 a x = a q ⋅ o r d n a + r = ( a o r d n a ) q a r ≡ a r ≡ 1 ( m o d n ) a^x=a^{q\cdot \mathrm{ord_n a}+r}=(a^{\mathrm{ord_n a}})^q a^r\equiv a^r\equiv 1\pmod n ax=aqordna+r=(aordna)qarar1(modn)所以 r = 0 r=0 r=0 x = q ⋅ o r d n a x=q\cdot \mathrm{ord_n a} x=qordna o r d n a ∣ x \mathrm{ord_n a}\mid x ordnax.

推论:若 a a a n n n互素且 n &gt; 0 n&gt;0 n>0,则 o r d

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值