常见函数求导及求导法则

  • 函数连续:
    f ( x ) f(x) f(x) 满足, lim ⁡ x →   0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim_{x\to \ 0}[f(x_0+\Delta x)-f(x_0)]=0 x 0lim[f(x0+Δx)f(x0)]=0
    则成 f ( x ) f(x) f(x) x 0 x_0 x0 连续

  • 定义:
    设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某个邻域有定义,当自变量 x x x x 0 x_0 x0 取得增量 Δ x \Delta x Δx,对应自变量取得增量 Δ y \Delta y Δy,若 lim ⁡ Δ x → 0 Δ y Δ x \lim_{\Delta x\to0 }\frac{\Delta y}{\Delta x} limΔx0ΔxΔy 存在,那么称函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 处可导,并将这个极限称做 y = ( x ) y=(x) y=(x) x 0 x_0 x0 处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0)
    f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)

  • 常用函数求导

  1. 常数函数 f ( x ) = C f(x)=C f(x)=C f ′ ( x ) = 0 f'(x)=0 f(x)=0

  2. f ( x ) = x n ( n ∈ N ∗ ) f(x)=x^n(n\in N^{*}) f(x)=xn(nN)
    n = 1 n=1 n=1 时, f ( x ) = 1 f(x)=1 f(x)=1
    n > 1 n>1 n>1 时,
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 ( x + Δ x ) n − x n Δ x = lim ⁡ Δ x → 0 n x n − 1 + ( n 2 ) x n − 2 Δ x + ⋯ + Δ x n − 1 = n x n − 1 f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ =\lim_{\Delta x\to 0}\frac{(x+\Delta x)^n-x^n}{\Delta x}\\ =\lim_{\Delta x\to 0}nx^{n-1}+\binom{n}{2}x^{n-2}\Delta x+\dots +\Delta x^{n-1}=nx^{n-1} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔx(x+Δx)nxn=Δx0limnxn1+(2n)xn2Δx++Δxn1=nxn1

  3. 幂函数 f ( x ) = x μ ( μ ∈ R ) f(x)=x^{\mu}(\mu\in R) f(x)=xμ(μR),设 x x x f ( x ) f(x) f(x) 的定义域内且 x ≠ 0 x\neq 0 x=0
    引理1:
    lim ⁡ x → 0 l o g a ( 1 + x ) x = lim ⁡ x → 0 l o g a ( 1 + x ) 1 x = 1 ln ⁡ ( a ) \lim_{x\to 0}\frac{log_a(1+x)}{x}=\lim_{x\to 0}log_a(1+x)^{\frac{1}{x}}=\frac{1}{\ln (a)} x0limxloga(1+x)=x0limloga(1+x)x1=ln(a)1

    引理2:
    lim ⁡ x → 0 ( 1 + x ) μ − 1 x = lim ⁡ x → 0 ( 1 + x ) μ − 1 ln ⁡ ( 1 + x ) μ ∗ μ ln ⁡ ( 1 + x ) x lim ⁡ t → 0 t ln ⁡ ( 1 + t ) ∗ lim ⁡ x → 0 μ ln ⁡ ( 1 + x ) x = μ \lim_{x\to0}\frac{(1+x)^{\mu}-1}{x}\\ = \lim_{x\to 0}\frac{(1+x)^{\mu}-1}{\ln (1+x)^{\mu}}*\frac{\mu \ln (1+x)}{x}\\\lim_{t\to 0}\frac{t}{\ln (1+t)}*\lim_{x\to 0}\frac{\mu \ln (1+x)}{x}=\mu x0limx(1+x)μ1=x0limln(1+x)μ(1+x)μ1xμln(1+x)t0limln(1+t)tx0limxμln(1+x)=μ
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 ( x + Δ x ) μ − x μ Δ x = lim ⁡ Δ x → 0 x μ − 1 ∗ ( 1 + Δ x x ) μ − 1 Δ x x = μ x μ − 1 f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ =\lim_{\Delta x\to 0}\frac{(x+\Delta x)^{\mu}-x^{\mu}}{\Delta x}\\ =\lim_{\Delta x\to 0}x^{\mu -1}*\frac{(1+\frac{\Delta x}{x})^{\mu}-1}{\frac{\Delta x}{x}}=\mu x^{\mu-1} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔx(x+Δx)μxμ=Δx0limxμ1xΔx(1+xΔx)μ1=μxμ1

  4. f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx 的导数
    引理 lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\to 0}\frac{\sin x}{x}=1 limx0xsinx=1
    运用夹逼法,得面积关系有 tan ⁡ x > x > sin ⁡ x → cos ⁡ x < sin ⁡ x x < 1 \tan x>x>\sin x \to \cos x<\frac{\sin x}{x}<1 tanx>x>sinxcosx<xsinx<1进而得证(可以自行百度)
    故有
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\=\lim_{\Delta x\to 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxsin(x+Δx)sinx
    和差化积
    lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x = lim ⁡ Δ x → 0 2 sin ⁡ Δ x 2 cos ⁡ ( x + Δ x 2 ) Δ x = cos ⁡ x \lim_{\Delta x\to 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x}\\ =\lim_{\Delta x\to 0}\frac{2\sin \frac{\Delta x}{2}\cos (x+\frac{\Delta x}{2})}{\Delta x}=\cos x Δx0limΔxsin(x+Δx)sinx=Δx0limΔx2sin2Δxcos(x+2Δx)=cosx
    同理可得, ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx

  5. f ( x ) = a x ( a > 0 , a ≠ 1 ) f(x)=a^{x}(a>0,a\neq 1) f(x)=ax(a>0,a=1) 的导数
    引理 lim ⁡ x → 0 a x − 1 x = ln ⁡ a \lim_{x\to 0}\frac{a^x-1}{x}=\ln a limx0xax1=lna
    t = a x − 1 t=a^x-1 t=ax1, lim ⁡ x → 0 a x − 1 x = lim ⁡ t → 0 t l o g a ( t + 1 ) = ln ⁡ a \lim_{x\to 0}\frac{a^x-1}{x}=\lim_{t\to 0}\frac{t}{log_a(t+1)}=\ln a limx0xax1=limt0loga(t+1)t=lna
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = a x lim ⁡ Δ x → 0 a Δ x − 1 Δ x = ln ⁡ a ∗ a x f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\= a^x\lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}=\ln a*a^x f(x)=Δx0limΔxf(x+Δx)f(x)=axΔx0limΔxaΔx1=lnaax

  6. f ( x ) = log ⁡ a x ( a > 0 , a ≠ 1 ) f(x)=\log_a x(a>0,a\neq 1) f(x)=logax(a>0,a=1) 的导数
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 1 Δ x log ⁡ a x + Δ x x = lim ⁡ Δ x → 0 1 x ∗ x Δ x log ⁡ a ( 1 + Δ x x ) = 1 x ln ⁡ a f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\=\lim_{\Delta x\to 0}\frac{1}{\Delta x}\log_a\frac{x+\Delta x}{x}=\\ \lim_{\Delta x\to 0}\frac{1}{x}*\frac{x}{\Delta x}\log_a(1+\frac{\Delta x}{x})=\frac{1}{x\ln a} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔx1logaxx+Δx=Δx0limx1Δxxloga(1+xΔx)=xlna1
    于是我们有 ( ln ⁡ x ) ′ = 1 x (\ln x)'=\frac{1}{x} (lnx)=x1

  • 函数求导法则:

  • 定理:如果函数 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x) x x x 均具有导数,那么它们的和,差,积,商(分母不为0),都在 x x x 点具有导数

  1. [ u ( x ) ± v ( x ) ] ′ = u ′ ( x ) ± v ′ ( x ) [u(x)\pm v(x)]'=u'(x)\pm v'(x) [u(x)±v(x)]=u(x)±v(x)
  2. [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + v ′ ( x ) u ( x ) [u(x)v(x)]'=u'(x)v(x)+v'(x)u(x) [u(x)v(x)]=u(x)v(x)+v(x)u(x)
  3. [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) [\frac{u(x)}{v(x)}]'=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)} [v(x)u(x)]=v2(x)u(x)v(x)u(x)v(x)

法则1略

  • 法则2证明:
    [ u ( x ) v ( x ) ] ′ = lim ⁡ h → 0 u ( x + h ) v ( x + h ) − u ( x ) v ( x ) h = lim ⁡ h → 0 [ u ( x + h ) − u ( x ) h v ( x + h ) − u ( x ) v ( x + h ) − v ( x ) h ] = u ′ ( x ) v ( x ) + v ′ ( x ) u ( x ) [u(x)v(x)]'=\lim_{h\to 0}\frac{u(x+h)v(x+h)-u(x)v(x)}{h}\\=\lim_{h\to 0}[\frac{u(x+h)-u(x)}{h}v(x+h)-u(x)\frac{v(x+h)-v(x)}{h}]\\=u'(x)v(x)+v'(x)u(x) [u(x)v(x)]=h0limhu(x+h)v(x+h)u(x)v(x)=h0lim[hu(x+h)u(x)v(x+h)u(x)hv(x+h)v(x)]=u(x)v(x)+v(x)u(x)
    其中 lim ⁡ h → 0 v ( x + h ) = v ( x ) \lim_{h\to 0}v(x+h)=v(x) limh0v(x+h)=v(x) 是因为 v ( x ) v(x) v(x) 在点 x x x 连续

  • 法则3 证明:
    [ u ( x ) v ( x ) ] ′ = lim ⁡ h → 0 u ( x + h ) v ( x + h ) − u ( x ) v ( x ) h = lim ⁡ h → 0 [ u ( x + h ) v ( x ) − u ( x ) v ( x + h ) h v ( x + h ) v ( x ) ] = lim ⁡ h → 0 [ ( u ( x + h ) − u ( x ) ) v ( x ) − u ( x ) ( v ( x + h ) − v ( x ) ) h v ( x + h ) v ( x ) ] = ( u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) ) v 2 ( x ) [\frac{u(x)}{v(x)}]'=\lim_{h\to 0}\frac{\frac{u(x+h)}{v(x+h)}-\frac{u(x)}{v(x)}}{h}\\=\lim_{h\to 0}[\frac{u(x+h)v(x)-u(x)v(x+h)}{hv(x+h)v(x)}]\\=\lim_{h\to 0}[\frac{(u(x+h)-u(x))v(x)-u(x)(v(x+h)-v(x))}{hv(x+h)v(x)}]\\=\frac{(u'(x)v(x)-u(x)v'(x))}{v^2(x)} [v(x)u(x)]=h0limhv(x+h)u(x+h)v(x)u(x)=h0lim[hv(x+h)v(x)u(x+h)v(x)u(x)v(x+h)]=h0lim[hv(x+h)v(x)(u(x+h)u(x))v(x)u(x)(v(x+h)v(x))]=v2(x)(u(x)v(x)u(x)v(x))

  • 复合函数求导法则:
    定理:若干 u = g ( x ) u=g(x) u=g(x) 在点 x x x 可导,而 y = f ( u ) y=f(u) y=f(u) 在点 u = g ( x ) u=g(x) u=g(x) 可导,那么复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]在点 x x x 可导,其导函数为
    d y d x = f ′ ( u ) ∗ g ′ ( x ) \frac{\text{d}y}{\text{d}x}=f'(u)*g'(x) dxdy=f(u)g(x)
    证明:
    lim ⁡ Δ u → 0 Δ y Δ u = f ′ ( u ) \lim_{\Delta u\to 0}\frac{\Delta y}{\Delta u}=f'(u) Δu0limΔuΔy=f(u)
    那么我们有
    Δ y Δ u = f ′ ( u ) + α ( Δ u ) \frac{\Delta y}{\Delta u}=f'(u)+\alpha(\Delta u) ΔuΔy=f(u)+α(Δu)
    其中 α ( Δ u ) \alpha(\Delta u) α(Δu) Δ u → 0 \Delta u\to 0 Δu0 时的无穷小,那么
    Δ y = f ′ ( u ) Δ u + α ( Δ u ) Δ u Δ y Δ x = f ′ ( u ) Δ u Δ x + α ( Δ u ) Δ u Δ x \Delta y=f'(u)\Delta u+\alpha(\Delta u)\Delta u\\ \frac{\Delta y}{\Delta x}=f'(u)\frac{\Delta u}{\Delta x}+\alpha(\Delta u)\frac{\Delta u}{\Delta x} Δy=f(u)Δu+α(Δu)ΔuΔxΔy=f(u)ΔxΔu+α(Δu)ΔxΔu
    由于 g ( x ) g(x) g(x) 连续,所以 Δ x → 0 \Delta x\to 0 Δx0 时, Δ u → 0 \Delta u\to 0 Δu0,所以 lim ⁡ Δ x → 0 α ( Δ u ) = 0 \lim_{\Delta x\to 0}\alpha(\Delta u)=0 limΔx0α(Δu)=0
    所以
    d x d y = f ′ ( u ) ∗ g ′ ( x ) \frac{\text{d}x}{\text{d}y}=f'(u)*g'(x) dydx=f(u)g(x)

  • 还有一些常见函数的求导
    ( t a n   x ) ′ = ( s i n   x c o s   x ) ′ = c o s 2   x + s i n 2   x c o s 2   x = s e c 2   x (tan\ x)'=(\frac{sin\ x}{cos\ x})'=\frac{cos^2\ x+sin^2\ x}{cos^2\ x}=sec^2\ x (tan x)=(cos xsin x)=cos2 xcos2 x+sin2 x=sec2 x
    ( c o t   x ) ′ = c o s   x s i n   x = − 1 s i n 2   x = − c s c 2   x (cot\ x)'=\frac{cos\ x}{sin\ x}=\frac{-1}{sin^2\ x}=-csc^2\ x (cot x)=sin xcos x=sin2 x1=csc2 x
    ( s e c   x ) ′ = ( 1 c o s   x ) ′ = s i n   x c o s 2   x = s e c   x t a n   x (sec\ x)'=(\frac{1}{cos\ x})'=\frac{sin\ x}{cos^2\ x}=sec\ xtan \ x (sec x)=(cos x1)=cos2 xsin x=sec xtan x
    ( c s c   x ) ′ = 1 s i n   x = − c o s   x s i n 2   x = − c s c   x c o t   x (csc\ x)'=\frac{1}{sin\ x}=\frac{-cos\ x}{sin^2\ x}=-csc\ xcot\ x (csc x)=sin x1=sin2 xcos x=csc xcot x
    ( a r c s i n   x ) ′ = 1 ( s i n   y ) ′ = 1 c o s   y = 1 1 − s i n 2   y = 1 1 − x 2 (arcsin\ x)'=\frac{1}{(sin\ y)'}=\frac{1}{cos\ y}=\frac{1}{\sqrt{1-sin^2\ y}}=\frac{1}{\sqrt{1-x^2}} (arcsin x)=(sin y)1=cos y1=1sin2 y 1=1x2 1
    ( a r c c o s   x ) ′ = 1 ( c o s   y ) ′ = − 1 s i n   y = − 1 1 − x 2 (arccos\ x)'=\frac{1}{(cos\ y)'}=-\frac{1}{sin\ y}=-\frac{1}{\sqrt{1-x^2}} (arccos x)=(cos y)1=sin y1=1x2 1
    ( a r c t a n   x ) ′ = 1 s e c 2 y = 1 1 + t a n 2 y = 1 1 + x 2 (arctan\ x)'=\frac{1}{sec^2 y}=\frac{1}{1+tan^2 y}=\frac{1}{1+x^2} (arctan x)=sec2y1=1+tan2y1=1+x21
    ( a r c c o t   x ) ′ = − 1 c s c 2   y = − 1 1 + x 2 (arccot\ x)'=\frac{-1}{csc^2\ y}=-\frac{1}{1+x^2} (arccot x)=csc2 y1=1+x21

  • 莱布尼兹公式
    ( u v ) ( n ) = ∑ i = 0 n ( n i ) u ( i ) v ( n − i ) (uv)^{(n)}=\sum_{i=0}^n\binom{n}{i}u^{(i)}v^{(n-i)} (uv)(n)=i=0n(in)u(i)v(ni)

假设 $f(x)$ 和 $g(x)$ 都是可导的函数,$y=f(u)$,其中 $u=g(x)$,则 $y$ 是 $x$ 的复合函数。我们要求解 $y$ 对 $x$ 的导数 $\frac{dy}{dx}$。 根据链式法则,$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$。 现在我们来分别求解 $\frac{dy}{du}$ 和 $\frac{du}{dx}$。 1. 求解 $\frac{dy}{du}$ 根据导数的定义,$\frac{dy}{du}=\lim_{\Delta u\to0}\frac{\Delta y}{\Delta u}$。 当 $\Delta u\to0$ 时,$\Delta y=f(u+\Delta u)-f(u)$。 将 $u+\Delta u$ 代入 $y=f(u)$,得到 $y=f(u+\Delta u)$。 因此,$\Delta y=f(u+\Delta u)-f(u)=y(u+\Delta u)-y(u)$。 将 $\Delta y$ 代入导数的定义中,得到: $$ \frac{dy}{du}=\lim_{\Delta u\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u} $$ 2. 求解 $\frac{du}{dx}$ 同理,$\frac{du}{dx}=\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}$。 当 $\Delta x\to0$ 时,$\Delta u=g(x+\Delta x)-g(x)$。 将 $\Delta u$ 代入 $u=g(x)$,得到 $u=g(x+\Delta x)$。 因此,$\Delta u=g(x+\Delta x)-g(x)=u(x+\Delta x)-u(x)$。 将 $\Delta u$ 代入导数的定义中,得到: $$ \frac{du}{dx}=\lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x} $$ 3. 求解 $\frac{dy}{dx}$ 将 $\frac{dy}{du}$ 和 $\frac{du}{dx}$ 代入 $\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$,得到: $$ \frac{dy}{dx}=\lim_{\Delta x\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u}\cdot\lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x} $$ 因为 $u=g(x)$,所以: $$ \lim_{\Delta x\to0}\frac{u(x+\Delta x)-u(x)}{\Delta x}=\lim_{\Delta x\to0}\frac{g(x+\Delta x)-g(x)}{\Delta x}=\frac{du}{dx} $$ 因此,上式可以简化为: $$ \frac{dy}{dx}=\lim_{\Delta u\to0}\frac{y(u+\Delta u)-y(u)}{\Delta u}\cdot\frac{du}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} $$ 这就是复合函数求导法则的推导过程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值