静态误差分析

文章详细介绍了误差分析中的随机误差、系统误差和粗大误差的概念及处理方法,包括随机误差的对称性、单峰性、有界性和抵偿性,标准差的计算,平均值的验证,极限误差的定义,以及系统误差的发现方法。此外,还讨论了不等精度测量下的加权平均值和处理粗大误差的步骤。
摘要由CSDN通过智能技术生成

分类

随机误差、系统误差、粗大误差。

随机误差:

大部分随机误差满足正态分布,具有对称性、单峰性、有界性、抵偿性。

对称性:绝对值相等的正负误差出现的次数相等。
单峰性:绝对值越小的误差出现次数越多。
有界性:在一定条件下,随机误差的绝对值不会超过一定界限。
抵偿性:随着测量次数增加,随机误差的平均值趋于0。

标准差

一般对某量进行测量时,其真值未知,可测量若干次取测量值 l 均值 \bar{x} 代替真值,有残余误差
v=l-\bar{x}。同时可由贝塞尔公式或别捷尔斯公式得其标准差。
\sigma =\sqrt{\frac{\sum_{i=1}^{n}vi^2}{n-1}}        (贝塞尔公式)        \sigma =1.253\frac{\sum_{i=1}^{n}\left | vi \right | }{\sqrt{n(n-1))}}        (别捷尔斯公式)

平均值验证

算术平均值及其残余误差计算是否正确,可用残余误差代数和性质验证。若平均值正确则有残余物差代数和为零:\sum_{i=1}^{n}vi=\sum_{i=1}^{n}li-\bar{x}=0

但由于计算均值 \bar{x} 时会出现小数位较多等情况,会对均值进行截取导致残余误差代数和不为0,因此可利用下列公式进行算术平均值的检验:

        当n为偶数:\left | \sum_{i =1}^{n}vi \right |\leq \frac{n}{2}A
        当n为奇数:\left | \sum_{i=1}^{n}vi \right |\leq (\frac{n}{2}-0.5)A
A为 \bar{x} 末位数的一个单位。

算术平均值标准差

对某量进行多组测量,每组测量所得均值不尽相同,而这些均值靠不靠谱可以利用均值的标准差来衡量
\sigma _{\bar{x} }=\frac{\sigma }{\sqrt{n}}

极限误差

当误差超过一定范围时,便可认为该误差为粗大误差,而这个范围界限便是极限误差

\delta _{lim}x=\pm t\sigma,一般取t=3。

不等精度测量

在对某量进行多组测量时,可能存在不同组使用了不同测量仪器、测量条件、测量次数等,称此为不等精度测量。对于不等精度测量需要对每组测量数据加权。

一般不等精度测量都是由每组测量次数不同(N1,N2,N3...)引起的,因此权值比为
p1:p2:...:pn=\frac{1}{^{_{\sigma }2}\bar{x1}}:\frac{1}{^{_{\sigma }2}\bar{x2}}:...:\frac{1}{^{_{\sigma }2}\bar{xn}}=N1:N2:...:Nn

对于进行m组测量有加权算术平均值:
\bar{x}=x0+\frac{\sum_{i=1}^{m}pi(\bar{x_{i}}-x0)}{\sum_{i=1}^{m}pi}
x0为任意一组测量平均值。

加权算术平均值标准差:

\sigma _{\bar{x}}=\sqrt{\frac{\sum_{i=1}^{m}pivi_{\bar{x}}^{2}}{(m-1)\sum_{i=1}^{m}pi}}

系统误差

发现方法

1.实验对比法:

        改变实验条件来发现系统误差,该方法主要用于发现那些不变的系统误差。
2.残余误差观察法:

        绘制参与误差曲线,正常情况下残余误差曲线在x轴上下均匀分布,否则则存在系统误差。
3.残余误差校核法:

        对于n个残余误差,取k=n/2(n为奇数),k=(n+1)/2(n为偶数),有
\Delta =\sum_{i=1}^{k}vi-\sum_{j=k+1}^{n}vj,当测量次数足够多,\Delta应为0,若其显著不为0,则存在线性系统误差。
4.公式判别法:

        取\sigma _{1}为贝塞尔公式所得,\sigma _{2}为别捷尔斯公式所得,若\left | \frac{\sigma _{2}}{\sigma _{1}}-1 \right |\geq \frac{2}{\sqrt{n-1}},则怀疑存在系统误差。

粗大误差

若残余误差\left |vi\right |>3\sigma则认为该残余误差为粗大误差,应当剔除。

测量结果的处理

1、求各个测量列均值 \bar{x} 。

2、求各个测量列的残余误差vi。

3、校验算术平均值。

4、判断系统误差。

5、求标准差。

6、判断粗大误差。

7、求算术平均值标准差。

8、求算术平均值极限误差。

9、得到最终结果:\bar{x}+\delta _{lim}\bar{x}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值