(四)矩阵的条件数

1.1 从扰动方程组的敏感性问题引入矩阵条件数

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n, det ⁡ A ≠ 0 \det A≠0 detA=0。若方程组 A x = b Ax=b Ax=b 的系数矩阵 A A A 和右端向量 b b b 有微小扰动,分别成为 A + δ A A+\delta A A+δA b + δ b b+\delta b b+δb ,那么实际解的方程组便是: ( A + δ A ) ( x + δ x ) = b + δ b (A+\delta A)(x+\delta x)=b+\delta b (A+δA)(x+δx)=b+δb其中 x = A − 1 b x=A^{-1}b x=A1b 。我们要问, 当 ∣ ∣ δ A ∣ ∣ ||\delta A|| ∣∣δA∣∣ ∣ ∣ δ b ∣ ∣ ||\delta b|| ∣∣δb∣∣ 都是较小的实数时, ∣ ∣ δ x ∣ ∣ ||\delta x|| ∣∣δx∣∣ 是否也是小的? 这就是在分析扰动方程组的敏感性问题

某些情况下方程组的解对 A \mathbf{A} A b b b 的扰动是敏感的,这时称方程组是病态方程组,或称 A \mathbf{A} A病态矩阵,从下面的定理可知:方程组病态与否完全决定于 A \mathbf{A} A

定理1.1:设 A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n, det ⁡ A ≠ 0 \det A≠0 detA=0 x x x x + δ x x+\delta x x+δx 分别满足方程组 { A x = b ( A + δ A ) ( x + δ x ) = b + δ b (1-1) \begin{cases} Ax =b\\[4mm] (A+\delta A)(x+\delta x)=b+ \delta b \end{cases}\tag{1-1} Ax=b(A+δA)(x+δx)=b+δb(1-1)其中 b ≠ 0 b≠0 b=0。而且 ∣ ∣ δ A ∣ ∣ ||\delta A|| ∣∣δA∣∣ 适当小,使 ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ < 1 (1-2) ||A^{-1}||~||\delta A||<1\tag{1-2} ∣∣A1∣∣ ∣∣δA∣∣<1(1-2)此时扰动方程组仍有唯一解,且 ∣ ∣ δ x ∣ ∣ ∣ ∣ x ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ ( ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ + ∣ ∣ δ b ∣ ∣ ∣ ∣ b ∣ ∣ ) (1-3) \frac{||\delta x||}{||x||}\leq\frac{||A||~||A^{-1}||}{1-||A^{-1}||~||\delta A||}\left(\frac{||\delta A||}{||A||}+\frac{||\delta b||}{||b||}\right)\tag{1-3} ∣∣x∣∣∣∣δx∣∣1∣∣A1∣∣ ∣∣δA∣∣∣∣A∣∣ ∣∣A1∣∣(∣∣A∣∣∣∣δA∣∣+∣∣b∣∣∣∣δb∣∣)(1-3)定理所用到的范数是任一种向量范数及从属于它的矩阵范数.

Remark:可以进一步证明,对于充分小的 δ A \delta A δA,一定存在非零的 δ A \delta A δA δ b \delta b δb 使(1-3)中的等号成立,也就是说(2-3)给出了相对误差 ∣ ∣ δ x ∣ ∣ ∣ ∣ x ∣ ∣ \frac{||\delta x||}{||x||} ∣∣x∣∣∣∣δx∣∣ 的上界,它就是最好的估计.

证明:首先需要说明在系数矩阵的扰动满足条件(1-2)时,扰动方程组有唯一解。
根据相容性得: ∣ ∣ A − 1 δ A ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ < 1 ||A^{-1}\delta A||\leq||A^{-1}||~||\delta A||<1 ∣∣A1δA∣∣∣∣A1∣∣ ∣∣δA∣∣<1 ,那么由定理可得矩阵 I + A − 1 δ A I+A^{-1}\delta A I+A1δA 可逆且
∣ ∣ ( I + A − 1 δ A ) − 1 ∣ ∣ ≤ 1 1 − ∣ ∣ A − 1 δ A ∣ ∣ ≤ 1 1 − ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ ||(I+A^{-1}\delta A)^{-1}||\leq\frac{1}{1-||A^{-1}\delta A||}\leq\frac{1}{1-||A^{-1}||~||\delta A||} ∣∣(I+A1δA)1∣∣1∣∣A1δA∣∣11∣∣A1∣∣ ∣∣δA∣∣1 A + δ A A+\delta A A+δA 可逆,扰动方程组有唯一解 x + δ x = ( A + δ A ) − 1 ( b + δ b ) x+\delta x=(A+\delta A)^{-1}(b+\delta b) x+δx=(A+δA)1(b+δb)那么 δ x = ( A + δ A ) − 1 [   ( b + δ b ) − ( A + δ A ) − 1 x   ] = ( I + A − 1 δ A ) − 1 A − 1   [   δ b − δ A x ] \delta x=(A+\delta A)^{-1}[~(b+\delta b)-(A+\delta A)^{-1}x~]=(I+A^{-1}\delta A)^{-1}A^{-1}~[~\delta b-\delta A x] δx=(A+δA)1[ (b+δb)(A+δA)1x ]=(I+A1δA)1A1 [ δbδAx]根据算子范数的相容性可得: ∣ ∣ δ x ∣ ∣ ≤ ∣ ∣ ( I + A − 1 δ A ) − 1 ∣ ∣   ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ b − δ A x ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ (   ∣ ∣ δ b ∣ ∣ + ∣ ∣ δ A x ∣ ∣   ) ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ ( ∣ ∣ δ b ∣ ∣ ∣ ∣ b ∣ ∣ ∣ ∣ A x ∣ ∣ + ∣ ∣ δ A x ∣ ∣ ) ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ ( ∣ ∣ δ b ∣ ∣ ∣ ∣ b ∣ ∣ ∣ ∣ A ∣ ∣   ∣ ∣ x ∣ ∣ + ∣ ∣ δ A ∣ ∣   ∣ ∣ x ∣ ∣ ) \begin{align} ||\delta x||&\leq||(I+A^{-1}\delta A)^{-1}||~||A^{-1}||~||\delta b-\delta A x||\\[4mm] &\leq\frac{||A^{-1}||}{1-||A^{-1}||~||\delta A||}(~||\delta b||+||\delta A x||~)\\[4mm] &\leq\frac{||A^{-1}||}{1-||A^{-1}||~||\delta A||}\left(\frac{||\delta b||}{||b||}||Ax||+||\delta A x||\right)\\[4mm] &\leq\frac{||A^{-1}||}{1-||A^{-1}||~||\delta A||}\left(\frac{||\delta b||}{||b||}||A||~||x||+||\delta A ||~||x||\right) \end{align} ∣∣δx∣∣∣∣(I+A1δA)1∣∣ ∣∣A1∣∣ ∣∣δbδAx∣∣1∣∣A1∣∣ ∣∣δA∣∣∣∣A1∣∣( ∣∣δb∣∣+∣∣δAx∣∣ )1∣∣A1∣∣ ∣∣δA∣∣∣∣A1∣∣(∣∣b∣∣∣∣δb∣∣∣∣Ax∣∣+∣∣δAx∣∣)1∣∣A1∣∣ ∣∣δA∣∣∣∣A1∣∣(∣∣b∣∣∣∣δb∣∣∣∣A∣∣ ∣∣x∣∣+∣∣δA∣∣ ∣∣x∣∣) ∣ ∣ δ x ∣ ∣ ∣ ∣ x ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ ( ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ + ∣ ∣ δ b ∣ ∣ ∣ ∣ b ∣ ∣ ) \frac{||\delta x||}{||x||}\leq\frac{||A||~||A^{-1}||}{1-||A^{-1}||~||\delta A||}\left(\frac{||\delta A||}{||A||}+\frac{||\delta b||}{||b||}\right) ∣∣x∣∣∣∣δx∣∣1∣∣A1∣∣ ∣∣δA∣∣∣∣A∣∣ ∣∣A1∣∣(∣∣A∣∣∣∣δA∣∣+∣∣b∣∣∣∣δb∣∣)

(证毕)

定义1.1: 设 A \mathbf{A} A n n n 阶非奇异矩阵,称数 C o n d ( A ) v = ∣ ∣ A ∣ ∣ v   ∣ ∣ A − 1 ∣ ∣ v (1-2) Cond(\mathbf{A})_v=||\mathbf{A}||_v~||\mathbf{A}^{-1}||_v\tag{1-2} Cond(A)v=∣∣Av ∣∣A1v(1-2)为矩阵 A \mathbf{A} A 的条件数,其中 ∣ ∣ ⋅ ∣ ∣ v ||\cdot||_v ∣∣v R n × n \mathbb{R}^{n\times n} Rn×n 中的某种算子范数。

定理1.2:设 A ∈ R n × n , det ⁡ A ≠ 0 A\in\mathbb{R}^{n\times n},\det A\ne0 ARn×n,detA=0 b ∈ R n , b ≠ 0 b\in\mathbb{R}^n,b\ne0 bRn,b=0 x x x 是方程组 A x = b Ax=b Ax=b 的精确解, x ^ \hat{x} x^ 为方程组的一个近似解,残差记为 r ≜ b − A x ^ r\triangleq b-A\hat{x} rbAx^ ,则有: 1 C o n d ( A ) ∣ ∣ r ∣ ∣ ∣ ∣ b ∣ ∣ ≤ ∣ ∣ x ^ − x ∣ ∣ ∣ ∣ x ∣ ∣ ≤ C o n d ( A ) ∣ ∣ r ∣ ∣ ∣ ∣ b ∣ ∣ (1-3) \frac{1}{Cond(A)}\frac{||r||}{||b||}\leq\frac{||\hat{x}-x||}{||x||}\leq Cond(A)\frac{||r||}{||b||}\tag{1-3} Cond(A)1∣∣b∣∣∣∣r∣∣∣∣x∣∣∣∣x^x∣∣Cond(A)∣∣b∣∣∣∣r∣∣(1-3)定理所用到的范数是任一种向量范数及从属于它的矩阵范数.

Remark: 该定理表明:若方程组是病态的,即系数矩阵的条件数较大时,即使残差向量的范数比较小,解的相对误差仍可能较大。这在数值计算设置停机条件时具有指导意义

证明:由 A x = b , A x ^ = b − r Ax=b,A\hat{x}=b-r Ax=b,Ax^=br 得: A ( x ^ − x ) = − r   ⟹   x ^ − x = − A − 1 r A(\hat{x}-x)=-r~\Longrightarrow~\hat{x}-x=-A^{-1}r A(x^x)=r  x^x=A1r ∣ ∣ x ^ − x ∣ ∣ = ∣ ∣ A − 1 r ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣   ∣ ∣ r ∣ ∣ ||\hat{x}-x||=||A^{-1}r||\leq||A^{-1}||~||r|| ∣∣x^x∣∣=∣∣A1r∣∣∣∣A1∣∣ ∣∣r∣∣ ∣ ∣ b ∣ ∣ = ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ x ∣ ∣ ⟹ 1 ∣ ∣ x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ∣ ∣ b ∣ ∣ ||b||=||Ax||\leq||A||~||x||\Longrightarrow \frac{1}{||x||}\leq\frac{||A||}{||b||} ∣∣b∣∣=∣∣Ax∣∣∣∣A∣∣ ∣∣x∣∣∣∣x∣∣1∣∣b∣∣∣∣A∣∣ , 则 ∣ ∣ x ^ − x ∣ ∣ ∣ ∣ x ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ∣ ∣   ∣ ∣ r ∣ ∣ ∣ ∣ b ∣ ∣ = C o n d ( A ) ∣ ∣ r ∣ ∣ ∣ ∣ b ∣ ∣ \frac{||\hat{x}-x||}{||x||}\leq\frac{||A||~||A^{-1}||~||r||}{||b||}=Cond(A)\frac{||r||}{||b||} ∣∣x∣∣∣∣x^x∣∣∣∣b∣∣∣∣A∣∣ ∣∣A1∣∣ ∣∣r∣∣=Cond(A)∣∣b∣∣∣∣r∣∣继续证明左端的不等式: ∣ ∣ x ^ − x ∣ ∣ ∣ ∣ x ∣ ∣ = ∣ ∣ A ∣ ∣   ∣ ∣ x ^ − x ∣ ∣ ∣ ∣ A ∣ ∣   ∣ ∣ x ∣ ∣ ≥ ∣ ∣ A x ^ − A x ∣ ∣ ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ( A x ) ∣ ∣ = ∣ ∣ r ∣ ∣ ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 b ∣ ∣ ≥ ∣ ∣ r ∣ ∣ ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ∣ ∣   ∣ ∣ b ∣ ∣ \frac{||\hat{x}-x||}{||x||}=\frac{||A||~||\hat{x}-x||}{||A||~||x||}\geq\frac{||A\hat{x}-Ax||}{||A||~||A^{-1}(Ax)||}=\frac{||r||}{||A||~||A^{-1}b||}\geq\frac{||r||}{||A||~||A^{-1}||~||b||} ∣∣x∣∣∣∣x^x∣∣=∣∣A∣∣ ∣∣x∣∣∣∣A∣∣ ∣∣x^x∣∣∣∣A∣∣ ∣∣A1(Ax)∣∣∣∣Ax^Ax∣∣=∣∣A∣∣ ∣∣A1b∣∣∣∣r∣∣∣∣A∣∣ ∣∣A1∣∣ ∣∣b∣∣∣∣r∣∣

(证毕)

1.2 矩阵条件数的性质

性质2.1 C o n d ( A ) = C o n d ( A − 1 ) Cond(A)=Cond(A^{-1}) Cond(A)=Cond(A1)
性质2.2 C o n d ( α A ) = C o n d ( A ) , ∀   α ∈ R , α ≠ 0 Cond(\alpha A)=Cond(A),\forall~\alpha\in\mathbb{R},\alpha\ne0 Cond(αA)=Cond(A), αR,α=0;
性质2.3 C o n d ( A ) ≥ 1 Cond(A)\geq1 Cond(A)1;

证明:根据算子范数的定义: C o n d ( A ) = ∣ ∣ A ∣ ∣   ∣ ∣ A − 1 ∣ ∣ ≥ ∣ ∣ I ∣ ∣ = sup ⁡ ∣ ∣ x ∣ ∣ = 1 ∣ ∣ I x ∣ ∣ = 1 Cond(A)=||A||~||A^{-1}||\geq||I||=\sup_{||x||=1}||Ix||=1 Cond(A)=∣∣A∣∣ ∣∣A1∣∣∣∣I∣∣=∣∣x∣∣=1sup∣∣Ix∣∣=1

(证毕)

性质2.4:谱条件数满足: C o n d ( A ) 2 = λ max ⁡ ( A T A ) λ min ⁡ ( A T A ) = λ max ⁡ ( A A T ) λ min ⁡ ( A A T ) Cond(A)_2=\sqrt{\frac{\lambda_{\max}(A^TA)}{\lambda_{\min}(A^TA)}}=\sqrt{\frac{\lambda_{\max}(AA^T)}{\lambda_{\min}(AA^T)}} Cond(A)2=λmin(ATA)λmax(ATA) =λmin(AAT)λmax(AAT) Q Q Q 为正交矩阵,则 C o n d ( Q ) 2 = 1 Cond(Q)_2=1 Cond(Q)2=1 C o n d ( A ) 2 = C o n d ( A Q ) 2 = C o n d ( Q A ) 2 Cond(A)_2=Cond(AQ)_2=Cond(QA)_2 Cond(A)2=Cond(AQ)2=Cond(QA)2;
S S S 为对称矩阵,则 C o n d ( S ) 2 = ∣ λ n ∣ ∣ λ 1 ∣ Cond(S)_2=\frac{|\lambda_n|}{|\lambda_1|} Cond(S)2=λ1λn,其中 ∣ λ 1 ∣ ≤ ∣ λ 2 ∣ ≤ ⋯ ≤ ∣ λ n ∣ |\lambda_1|\leq|\lambda_2|\leq\cdots\leq|\lambda_n| λ1λ2λn S S S 特征值的模。

证明:根据 ∣ ∣ A ∣ ∣ 2 = λ max ⁡ ( A T A ) ||A||_2=\sqrt{\lambda_{\max}(A^TA)} ∣∣A2=λmax(ATA) ,且 A T A A^TA ATA, A A T AA^T AAT为对称正定矩阵得: ∣ ∣ A − 1 ∣ ∣ 2 = λ max ⁡ ( A − T A − 1 ) = λ max ⁡ ( A A T ) − 1 = 1 λ min ⁡ ( A A T ) ||A^{-1}||_2=\sqrt{\lambda_{\max}(A^{-T}A^{-1})}=\sqrt{\lambda_{\max}(AA^{T})^{-1}}=\frac{1}{\sqrt{\lambda_{\min}(AA^{T})}} ∣∣A12=λmax(ATA1) =λmax(AAT)1 =λmin(AAT) 1 C o n d ( A ) 2 = ∣ ∣ A ∣ ∣ 2   ∣ ∣ A − 1 ∣ ∣ 2 = λ max ⁡ ( A T A ) λ min ⁡ ( A A T ) Cond(A)_2=||A||_2~||A^{-1}||_2=\sqrt{\frac{\lambda_{\max}(A^TA)}{\lambda_{\min}(AA^T)}} Cond(A)2=∣∣A2 ∣∣A12=λmin(AAT)λmax(ATA) 又由于矩阵 B D BD BD 与矩阵 D B DB DB 具有相同的特征值,故结论及其推论显然成立。

(证毕)

性质2.5:设 A A A 特征值的模满足 ∣ λ 1 ∣ ≤ ∣ λ 2 ∣ ≤ ⋯ ≤ ∣ λ n ∣ |\lambda_1|\leq|\lambda_2|\leq\cdots\leq|\lambda_n| λ1λ2λn ,则 C o n d ( A ) ≥ ∣ λ n ∣ ∣ λ 1 ∣ Cond(A)\geq\frac{|\lambda_n|}{|\lambda_1|} Cond(A)λ1λn

性质2.6:根据矩阵范数的等价性可得不同范数对应的条件数之间的关系,如 { 1 n   C o n d ( A ) 2 ≤ C o n d ( A ) 1 ≤ n   C o n d ( A ) 2 1 n   C o n d ( A ) ∞ ≤ C o n d ( A ) 2 ≤ n   C o n d ( A ) ∞ 1 n 2   C o n d ( A ) 1 ≤ C o n d ( A ) ∞ ≤ n 2   C o n d ( A ) 1 \begin{cases} \frac{1}{n}~Cond(A)_2\leq Cond(A)_1\leq n~Cond(A)_2\\[4mm] \frac{1}{n}~Cond(A)_{\infty}\leq Cond(A)_2\leq n~Cond(A)_{\infty}\\[4mm] \frac{1}{n^2}~Cond(A)_1\leq Cond(A)_{\infty}\leq n^2~Cond(A)_1 \end{cases} n1 Cond(A)2Cond(A)1n Cond(A)2n1 Cond(A)Cond(A)2n Cond(A)n21 Cond(A)1Cond(A)n2 Cond(A)1

1.3 矩阵条件数的几何意义

定理3.1:记奇异矩阵构成的集合为 S = { B ∈ R n × n ∣ det ⁡ B = 0 } S=\{B\in\mathbb{R}^{n\times n}|\det B=0\} S={BRn×ndetB=0} ,那么"非奇异矩阵 A A A 的条件数 C o n d ( A ) v Cond(A)_v Cond(A)v 的倒数"可视为 A A A S S S 的最小相对距离,即 1 C o n d ( A ) v = min ⁡ A + δ A ∈ S ∣ ∣ δ A ∣ ∣ v ∣ ∣ A ∣ ∣ v (3-1) \frac{1}{Cond(A)_v}=\min_{A+\delta A\in S}\frac{||\delta A||_v}{||A||_v}\tag{3-1} Cond(A)v1=A+δASmin∣∣Av∣∣δAv(3-1)定理所用到的范数是任一种向量范数及从属于它的矩阵范数.

Remark: 上述定理表明:当 A A A 的条件数越大时, A A A 与奇异矩阵的相对距离就越小, A A A 就越病态。

证明:若 ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ < 1 ||A^{-1}||~||\delta A||<1 ∣∣A1∣∣ ∣∣δA∣∣<1 ,则 ( A + δ A ) ∉ S (A+\delta A)\notin S (A+δA)/S ,故 ∣ ∣ A − 1 ∣ ∣   ∣ ∣ δ A ∣ ∣ ≥ 1   ⟹   ∣ ∣ δ A ∣ ∣ ≥ 1 ∣ ∣ A − 1 ∣ ∣ ⟹ ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ ≥ 1 C o n d ( A ) (*) ||A^{-1}||~||\delta A||\geq1 ~\Longrightarrow~||\delta A||\geq\frac{1}{||A^{-1}||}\Longrightarrow\frac{||\delta A||}{||A||}\geq\frac{1}{Cond(A)}\tag{*} ∣∣A1∣∣ ∣∣δA∣∣1  ∣∣δA∣∣∣∣A1∣∣1∣∣A∣∣∣∣δA∣∣Cond(A)1(*)下面构造性的证明上述不等式可以取等号,利用算子范数的性质: ∃   x ∈ R n  且  ∣ ∣ x ∣ ∣ = 1 ,   s . t . ∣ ∣ A − 1 x ∣ ∣ = ∣ ∣ A − 1 ∣ ∣ \exists~x\in\mathbb{R}^n~\text{且}~||x||=1,~s.t.||A^{-1}x||=||A^{-1}||  xRn  ∣∣x∣∣=1, s.t.∣∣A1x∣∣=∣∣A1∣∣构造 δ A = − x y T ∣ ∣ A − 1 ∣ ∣ , y = A − 1 x ∣ ∣ A − 1 x ∣ ∣ = A − 1 x ∣ ∣ A − 1 ∣ ∣ \delta A=-\frac{xy^T}{||A^{-1}||},\quad y=\frac{A^{-1}x}{||A^{-1}x||}=\frac{A^{-1}x}{||A^{-1}||} δA=∣∣A1∣∣xyT,y=∣∣A1x∣∣A1x=∣∣A1∣∣A1x首先验证所构造出的 δ A \delta A δA 满足 A + δ A ∈ S A+\delta A\in S A+δAS,由于 ( A + δ A ) y = A y + δ A   y = x ∣ ∣ A − 1 ∣ ∣ − x y T y ∣ ∣ A − 1 ∣ ∣ = 0 (A+\delta A)y=Ay+\delta A~y=\frac{x}{||A^{-1}||}-\frac{xy^Ty}{||A^{-1}||}=0 (A+δA)y=Ay+δA y=∣∣A1∣∣x∣∣A1∣∣xyTy=0 ∣ ∣ y ∣ ∣ = 1 ⟹ y ≠ 0 ||y||=1\Longrightarrow y\ne0 ∣∣y∣∣=1y=0 .故上述齐次方程组有非零解,系数矩阵奇异。进一步验证所构造的 δ A \delta A δA 可以使得 ( ∗ ) (*) () 取等号: ∣ ∣ δ A ∣ ∣ = sup ⁡ ∣ ∣ z ∣ ∣ = 1 ∥ δ A   z ∥ = sup ⁡ ∣ ∣ z ∣ ∣ = 1 ∥ x y T ∣ ∣ A − 1 ∣ ∣   z ∥ = 1 ∣ ∣ A − 1 ∣ ∣ sup ⁡ ∣ ∣ z ∣ ∣ = 1 ∥ x y T z ∥ = ∣ ∣ x ∣ ∣ ∣ ∣ A − 1 ∣ ∣ sup ⁡ ∣ ∣ z ∣ ∣ = 1 ∣ y T z ∣ = 1 ∣ ∣ A − 1 ∣ ∣ sup ⁡ ∣ ∣ z ∣ ∣ = 1 ∣ y T z ∣ \begin{align}||\delta A||&=\sup_{||z||=1}\left\Vert\delta A~z\right\Vert=\sup_{||z||=1}\left\Vert\frac{xy^T}{||A^{-1}||}~z\right\Vert=\frac{1}{||A^{-1}||}\sup_{||z||=1}\left\Vert xy^Tz\right\Vert\\[4mm] &=\frac{||x||}{||A^{-1}||}\sup_{||z||=1}\left|y^Tz\right|=\frac{1}{||A^{-1}||}\sup_{||z||=1}\left|y^Tz\right|\end{align} ∣∣δA∣∣=∣∣z∣∣=1supδA z=∣∣z∣∣=1sup ∣∣A1∣∣xyT z =∣∣A1∣∣1∣∣z∣∣=1sup xyTz =∣∣A1∣∣∣∣x∣∣∣∣z∣∣=1sup yTz =∣∣A1∣∣1∣∣z∣∣=1sup yTz 由于 ∣ ∣ y ∣ ∣ = 1 ||y||=1 ∣∣y∣∣=1, ∣ ∣ z ∣ ∣ = 1 ||z||=1 ∣∣z∣∣=1,故 sup ⁡ ∣ ∣ z ∣ ∣ = 1 ∣ y T z ∣ = 1 \sup_{||z||=1}\left|y^Tz\right|=1 ∣∣z∣∣=1sup yTz =1那么所构造的 δ A \delta A δA 满足: ∣ ∣ δ A ∣ ∣ = 1 ∣ ∣ A − 1 ∣ ∣   ⟹   ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ = 1 C o n d ( A ) ||\delta A||=\frac{1}{||A^{-1}||}~\Longrightarrow~\frac{||\delta A||}{||A||}=\frac{1}{Cond(A)} ∣∣δA∣∣=∣∣A1∣∣1  ∣∣A∣∣∣∣δA∣∣=Cond(A)1

(证毕)

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值