【论文】基于特定实体的文本情感分类总结(PART I)

48 篇文章 18 订阅
29 篇文章 3 订阅

最近在看一个比赛:2019 搜狐校园算法大赛,赛题说的是

给定若干文章,目标是判断文章的核心实体以及对核心实体的情感态度。每篇文章识别最多三个核心实体,并分别判断文章对上述核心实体的情感倾向(积极、中立、消极三种)。

这里说的是实体识别,马上想到的就是利用分步走解决:先去对文章进行实体识别,然后对提取出来的实体进行情感分类。但是后来一想这样两步的话会使得最终结果的错误率叠加,也就是说第一步做的不好的话会很大程度影响到第二步的结果。其实仔细看一下数据集会发现,它给出的很多样本实体并不是传统实体识别的实体,而是句子中的某一个token。这就跟SemEval2014的subtask 4非常像了,也就是Aspect Based Sentiment Analysis (ABSA)。不说废话了,接下来我们来看看关于ABSA问题都有哪些常用的算法。

1. A glance at ABSA(什么是ABSA)

在介绍具体算法之前,先来看一下什么是ABSA?可以粗暴翻译为基于方面的情感分析,本质就是对句子中不同对象可能会存在不同的情感倾向,例如:“I bought a new camera. The picture quality is amazing but the battery life is too short”,这句话中对于target=picture quality,情感是正的;而对于target=battery,情感就是负的了。ABSA任务的目的就是去找出给定句子中的不同target的情感倾向。

一个关于ABSA的PPT介绍


2. Effective LSTMs for Target-Dependent Sentiment Classification(Tang/COLING2016)

在这篇论文里面作者主要是介绍了三种解决ABSA任务的模型:

  • LSTM
  • Target-Dependent LSTM (TD-LSTM)
  • Target-Connection LSTM (TC-LSTM)
LSTM

第一种方法就是直接使用NLP中的万金油模型LSTM,在该模型中,target words是被忽略的,也就是说跟普通的对文本情感分析的做法没有区别,最终得到的也是这个句子的全局情感,可想而知最后的效果一般般。具体做法就是对句子中的token进行embedding处理作为模型的输入,经过一次一次的计算隐层和输入之后得到一个句子表示 h n h_{n} hn,接着对这个向量进行softmax计算概率, 其中C是情感类别种类。
softmax ⁡ i = exp ⁡ ( x i ) ∑ i ′ = 1 C exp ⁡ ( x i ′ ) \operatorname{softmax}_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{i^{\prime}=1}^{C} \exp \left(x_{i^{\prime}}\right)} softmaxi=i=1Cexp(xi)exp(xi)

在这里插入图片描述

TD-LSTM

为了解决上面LSTM忽略目标词的问题,提出了TD-LSTM模型,如下图所示。
在这里插入图片描述
其基本思想是对于一个target-word,充分考虑其上下文信息,具体来说使用了两个LSTM,从左往右的和从右往左的,分别对target word的左边和右边的信息建模。接着将两个LSTM得到的隐状态 h l h_{l} hl h r h_{r} hr concat一下,也就得到了关于这个词的句子情感表示,然后一样也是送入到softmax进行分类。除了concat作者也提到可以尝试进行sum或者average。

TC-LSTM

TC-LSTM在TD-LSTM的基础上进一步加强了target-word与句子中每个token的关联,看模型框架就会很清晰,

可以看出,这里在模型输入的时候多加入了一部分: v t a r g e t v_{target} vtarget,这样就可以加强target与句子的交互,使得最后的表示更为确切。那么这个 v t a r g e t v_{target} vtarget是怎么得到的呢?其实就是简单地对target words的向量表示进行平均化处理得到一个向量。

实验结果比对

在这里插入图片描述


3. Attention-based LSTM for Aspect-level Sentiment Classification(Wang/EMNLP2016)

这是在Effective LSTMs for Target-Dependent Sentiment Classification后面发出的文章,指出前者的不足之处:

However, those models can only take into consideration the target but not aspect information which is proved to be crucial for aspect-level classification.

作者这里提到了两个概念:target和aspect。我们可以认为target是包含在句子中出现的词,而aspect属于预先定义的比较high-level的类别刻画。
基于以上,提出了两种模型:

  • Attention-based LSTM (AT-LSTM)
  • Attention-based LSTM with Aspect Embedding (ATAE-LSTM)
Aspect Embedding

对于ABSA问题,aspect信息对于最终的情感判别是非常重要的。因此作者对每个aspect都学习一个相应地aspect embedding来表示, v a i v_{a_{i}} vai

AT-LSTM

既然学习出了aspect embedding,那么怎么把它结合进模型里呢?这里使用的是超级火的注意力机制,如下图所示
在这里插入图片描述
为了更好地理解上述模型,首先回顾一下 vanilla attention mechanism,也就是key-value-query模型,具体可以参考理解Attention机制原理及模型。这里可以认为key=H, value=H, query=aspect embedding,整个attention的过程可以用数学表示为:

M = tanh ⁡ ( [ W h H W v v a ⊗ e N ] ) α = softmax ⁡ ( w T M ) r = H α T \begin{array}{l}{M=\tanh \left(\left[ \begin{array}{c}{W_{h} H} \\ {W_{v} v_{a} \otimes e_{N}}\end{array}\right]\right)} \\ {\alpha=\operatorname{softmax}\left(w^{T} M\right)} \\ {r=H \alpha^{T}}\end{array} M=tanh([WhHWvvaeN])α=softmax(wTM)r=HαT
其中r表示各hidden state带权重后的表示,然后最终句子的表示为:
h ∗ = tanh ⁡ ( W p r + W x h N ) h^{*}=\tanh \left(W_{p} r+W_{x} h_{N}\right) h=tanh(Wpr+WxhN)
得到句子的表示后再进行情感判别:
y = softmax ⁡ ( W s h ∗ + b s ) y=\operatorname{softmax}\left(W_{s} h^{*}+b_{s}\right) y=softmax(Wsh+bs)

ATAE-LSTM

为了进一步利用aspect embedding的信息,类似于上一节中TC-LSTM中的思想,即将aspect embedding与word embedding共同组合成模型的输入。模型的其他部分与AT-LSTM相同。
在这里插入图片描述

注意力结果可视化

在这里插入图片描述

试验分析

论文使用的数据集是SemEval 2014 Task 4,正如开篇提到的一样。
在这里插入图片描述
在这里插入图片描述


4. Learning to Attend via Word-Aspect Associative Fusion for Aspect-based Sentiment Analysis(Tay/AAAI2018)

对于上一节的ATAE-LSTM,作者认为仍然存在以下不足:

  • ATAE中的attention层学习上下文词之间的重要性关系,而不是对aspect和context之间建模。(???没懂,上下文词之间的重要性关系不就是相对于aspect而言的吗,就是上下文词与aspect之间的重要程度关系吧…)
  • 简单的aspect embedding和word embedding拼接使得模型难以训练

针对以上提出了Aspect Fusion LSTM (AF-LSTM),模型整体框架如下:
在这里插入图片描述

Word-Aspect Fusion Attention Layer

在输入经过embedding层和LSTM层之后进入到Word-Aspect Fusion Attention Layer,这也是该模型的重点。

  1. Normalization Layer(optional): 在隐状态矩阵和aspect vector进行交互之前可以选择性地对其进行正规化操作,可以选用Batch Normalization;
  2. Associative Memory Operators: 用于计算context word 和 aspect word之间的关系。有两种:
    • circular correlation和circular convolution
      在这里插入图片描述
      [ h ⋆ s ] k = ∑ i = 0 d − 1 h i s ( k + i )   m o d   d [h \star s]_{k}=\sum_{i=0}^{d-1} h_{i} s_{(k+i)} \bmod d [hs]k=i=0d1his(k+i)modd
      也可以用傅里叶变化得到: h ⋆ a = F − 1 ( F ( h ) ‾ ⊙ F ( a ) ) h \star a=\mathcal{F}^{-1}(\overline{\mathcal{F}(h)} \odot \mathcal{F}(a)) ha=F1(F(h)F(a))
    • circular convolution
      在这里插入图片描述
      [ h ∗ s ] k = ∑ i = 0 d − 1 h i s ( k − i )   m o d   d [h * s]_{k}=\sum_{i=0}^{d-1} h_{i} s_{(k-i) \bmod d} [hs]k=i=0d1his(ki)modd
  3. Learning Attentive Representations: 将aspect和context进行fusion之后得到的向量表示进行attention操作
试验分析

在这里插入图片描述

5. Interactive Attention Networks for Aspect-Level Sentiment Classification(Ma/IJCAI2017)

这篇文章作者的思路也是将target和context进行交互获取句子的准确表达,利用的模型是attention。与上面几个模型不同的在于,这里考虑了target可能存在好几个word组成的短语,另外添加了一层对于target的attention操作用于计算权重。提出了Interactive Attention Networks(IAN), 整体模型框架如下:
在这里插入图片描述

IAN
  1. 输入包括n个单词的context [ w c 1 , w c 2 , … , w c n ] \left[w_{c}^{1}, w_{c}^{2}, \ldots, w_{c}^{n}\right] [wc1,wc2,,wcn]和m个单词的target [ w t 1 , w t 2 , … , w t m ] \left[w_{t}^{1}, w_{t}^{2}, \ldots, w_{t}^{m}\right] [wt1,wt2,,wtm]
  2. 对输入进行embedding层后输入到LSTM网络中得到各个隐状态表示;
  3. 对所有隐状态求平均分别得到target和context的隐状态表示,以此作为后续attention两者的交互:
    c a v g = ∑ i = 1 n h c i / n c_{a v g}=\sum_{i=1}^{n} h_{c}^{i} / n cavg=i=1nhci/n t a v g = ∑ i = 1 m h t i / m t_{a v g}=\sum_{i=1}^{m} h_{t}^{i} / m tavg=i=1mhti/m
  4. 分别计算attention权重得分:
    γ ( h c i , t a v g ) = tanh ⁡ ( h c i ⋅ W a ⋅ t a v g T + b a ) \gamma\left(h_{c}^{i}, t_{a v g}\right)=\tanh \left(h_{c}^{i} \cdot W_{a} \cdot t_{a v g}^{T}+b_{a}\right) γ(hci,tavg)=tanh(hciWatavgT+ba) α i = exp ⁡ ( γ ( h c i , t a v g ) ) ∑ j = 1 n exp ⁡ ( γ ( h c j , t a v g ) ) \alpha_{i}=\frac{\exp \left(\gamma\left(h_{c}^{i}, t_{a v g}\right)\right)}{\sum_{j=1}^{n} \exp \left(\gamma\left(h_{c}^{j}, t_{a v g}\right)\right)} αi=j=1nexp(γ(hcj,tavg))exp(γ(hci,tavg))
    γ ( h t i , c a v g ) = tanh ⁡ ( h t i ⋅ W a ′ ⋅ c a v g T + b a ′ ) \gamma\left(h_{t}^{i}, c_{a v g}\right)=\tanh \left(h_{t}^{i} \cdot W_{a'} \cdot c_{a v g}^{T}+b_{a'}\right) γ(hti,cavg)=tanh(htiWacavgT+ba) β i = exp ⁡ ( γ ( h t i , c a v g ) ) ∑ j = 1 m exp ⁡ ( γ ( h t j , c a v g ) ) \beta_{i}=\frac{\exp \left(\gamma\left(h_{t}^{i}, c_{a v g}\right)\right)}{\sum_{j=1}^{m} \exp \left(\gamma\left(h_{t}^{j}, c_{a v g}\right)\right)} βi=j=1mexp(γ(htj,cavg))exp(γ(hti,cavg))
  5. 根据单词权重计算target和context的最终表示:
    c r = ∑ i = 1 n α i h c i t r = ∑ i = 1 m β i h t i \begin{aligned} c_{r} &=\sum_{i=1}^{n} \alpha_{i} h_{c}^{i} \\ t_{r} &=\sum_{i=1}^{m} \beta_{i} h_{t}^{i} \end{aligned} crtr=i=1nαihci=i=1mβihti
  6. c r c_{r} cr t r t_{r} tr拼接起来作为整个输入句子的向量表示,并送入softmax计算类别概率
试验分析

同样数据集选用的也是SemEval 2014 Task 4,
在这里插入图片描述


以上~
2019.05.03

  • 15
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值