这篇文章主要介绍神经网络中两个基本单元,感知器和线性单元,以及他们的训练法则。
所谓训练法则就是定义一个或一组规则,通过这些规则能让我们的到一组合适的权向量。
神经网络包括集中主要的基本单元,主要是感知器(preceptron)、线性单元(liner unit)和sigmoid单元(sigmod unit)。下面主要介绍感知器和线性单元以及他们的训练法则。
感知器,感知器法则:
构成一种ANN系统的基本单元。可以接受多个输入,通过权向量与输入向量相乘后累加,根据累加后结果判断输出是0或1.
1. 定义输出:
2. 决策超平面方程:
3. 感知器的表征能力:
感知器可以看做n维空间的一个超平面,可以用这个超平面分割的称为线性可分样例集合。单独的感知器可以表征布尔函数。可以表征的布尔运算有与,或,与非,或非。
从上可以看出,仅用两层深度的神经网络就可以表示出所有的逻辑组合。
4. 训练:
感知器训练法则:
从随机的权值开始到每个样例,只要错误分类就修改感知器权值。
核心迭代公式为:
神经网络之感知器准则,delta准则
最新推荐文章于 2025-04-16 09:00:00 发布