欧拉图与哈密顿图
文章目录
欧拉图
欧拉通路:经过图中所有边的简单通路
欧拉回路:经过图中所有边的简单回路
欧拉图: 存在欧拉回路的图
半欧拉图 :存在欧拉通路的图
规定平凡图为欧拉图
无向欧拉图的充要条件
G是欧拉图 ⇔ \Harr ⇔ G中所有顶点的度都是偶数 ⇔ \Harr ⇔ G是若干个边不交的圈的并
无向半欧拉图的充要条件
G是欧拉图 ⇔ \Harr ⇔G中恰有两个奇度顶点
Fleury算法(求欧拉回路)
确定一点,选择与该点相连的边,若该边满足不是桥,则走该路(除非别无选择,否则不走桥)
哈密顿图
哈密顿通路:经过图中所有点的初级通路(边和点均互异)
哈密顿回路: 经过图中所有顶点的初级回路(圈 )
哈密顿图: 有哈密顿回路的图
半哈密顿图: 有哈密顿通路的图
无向哈密顿图的必要条件
定理8.6:设G=<V,E>是无向哈密顿图,则对任意非空真子集 V 1 ϵ V V_1\epsilon V V1ϵV
有 p ( G − V 1 ) ≤ ∣ V 1 ∣ p(G-V_1)\le|V_1| p(G−V1)≤∣V1∣
注意是必要条件,用来判断不是哈密顿图
无向半哈密顿图的必要条件
有 p ( G − V 1 ) ≤ ∣ V 1 ∣ + 1 p(G-V_1)\le|V_1|+1 p(G−V1)≤∣V1∣+1
Peterson图
是半哈密顿图,不是哈密顿图,满足哈密顿图的必要条件
无向半哈密顿图的充分条件
定理8.7:对G的任意不相邻顶点u和v有
d ( u ) + d ( v ) ≥ n − 1 d(u)+d(v)\ge n-1 d(u)+d(v)≥n−1
则G是半哈密顿图
无向哈密顿图的充分条件
对G的任意不相邻顶点u和v有
d ( u ) + d ( v ) ≥ n d(u)+d(v)\ge n d(u)+d(v)≥n
则G是哈密顿图
定理8.8:不相邻顶点u和v有
d ( u ) + d ( v ) ≥ n d(u)+d(v)\ge n d(u)+d(v)≥n
则G是哈密顿图 ⇔ \Harr ⇔ GU(u,v)是哈密顿图
无向半哈密顿图的充分条件
定理8.9:设 D是 n ( ≥ 2 ) n(\ge2) n(≥2)阶竞赛图,则D是半哈密顿图