离散数学复习笔记——欧拉图和哈密顿图

欧拉图与哈密顿图

欧拉图

欧拉通路:经过图中所有边的简单通路

欧拉回路:经过图中所有边的简单回路

欧拉图: 存在欧拉回路的图

半欧拉图 :存在欧拉通路的图

规定平凡图为欧拉图

无向欧拉图的充要条件

G是欧拉图 ⇔ \Harr G中所有顶点的度都是偶数 ⇔ \Harr G是若干个边不交的圈的并

无向半欧拉图的充要条件

G是欧拉图 ⇔ \Harr G中恰有两个奇度顶点

Fleury算法(求欧拉回路)

确定一点,选择与该点相连的边,若该边满足不是桥,则走该路(除非别无选择,否则不走桥)

哈密顿图

哈密顿通路:经过图中所有点的初级通路(边和点均互异)

哈密顿回路: 经过图中所有顶点的初级回路(圈 )

哈密顿图: 有哈密顿回路的图

半哈密顿图: 有哈密顿通路的图

无向哈密顿图的必要条件

定理8.6:设G=<V,E>是无向哈密顿图,则对任意非空真子集 V 1 ϵ V V_1\epsilon V V1ϵV

p ( G − V 1 ) ≤ ∣ V 1 ∣ p(G-V_1)\le|V_1| p(GV1)V1

注意是必要条件,用来判断不是哈密顿图

无向半哈密顿图的必要条件

p ( G − V 1 ) ≤ ∣ V 1 ∣ + 1 p(G-V_1)\le|V_1|+1 p(GV1)V1+1

Peterson图

是半哈密顿图,不是哈密顿图,满足哈密顿图的必要条件

无向半哈密顿图的充分条件

定理8.7:对G的任意不相邻顶点u和v有

d ( u ) + d ( v ) ≥ n − 1 d(u)+d(v)\ge n-1 d(u)+d(v)n1

则G是半哈密顿图

无向哈密顿图的充分条件

对G的任意不相邻顶点u和v有

d ( u ) + d ( v ) ≥ n d(u)+d(v)\ge n d(u)+d(v)n

则G是哈密顿图

定理8.8:不相邻顶点u和v有

d ( u ) + d ( v ) ≥ n d(u)+d(v)\ge n d(u)+d(v)n

则G是哈密顿图 ⇔ \Harr GU(u,v)是哈密顿图

无向半哈密顿图的充分条件

定理8.9:设 D是 n ( ≥ 2 ) n(\ge2) n(2)阶竞赛图,则D是半哈密顿图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值