数学基础:多重积分

简介

在这里插入图片描述

标准定义(参考同济版教材自己给出的定义):

f ( x , y , z . . . . ) f(x,y,z....) f(x,y,z....)是有界区域D上的有界函数,讲闭区间D任意分成n个小闭区域 σ n \sigma _n σn 在每个小闭区域中任取一点,把小闭区域的函数值用 f ( x , y , z . . . . ) f(x,y,z....) f(x,y,z....)来代表,记这个小闭区域的最大直径(超直径)为d,那么 lim ⁡ d → 0 ∑ i = 1 n f ( x , y , z . . . . ) d σ n \lim_{d \to 0}\sum_{i=1}^{n}f(x,y,z....)d\sigma _n d0limi=1nf(x,y,z....)dσn 可以认为是这块区域的求和,如果把这个变量连续,则 ∬ D f ( x , y , z . . . . ) d σ n \iint_Df(x,y,z....)d\sigma _n Df(x,y,z....)dσn

一些界定和直观理解

  • 积分号逆序计算,积分变量顺序计算
    不存在不定积分,只存在定积分
    多重积分一样具有积分的可加性和一些积分的性质
    有选择:直角坐标 or 极坐标;分解是先对x积还是先对y积

计算方法

  1. 将限定的区域D转化为每一个变量的上下限
  2. 使用简化公式将多积分转化为单积分的序列(不同顺序的积分是相等的,因为从几何上面看都等于图像关于轴轴的体积或者是超体积)
  3. 按照单序列的方式去求积分,这个过程中其他变量暂时视为常数

累次积分和多重积分

积分换元法

雅可比式

见另文

user
多元积分中雅可比式的应用
多元积分中雅可比式的应用非常广泛,它可以用于变量替换、坐标系转换等问题。

在多元积分中,变量替换是一个常见的问题。例如,我们要计算一个二元函数 f ( x , y ) f(x,y) f(x,y) 在区域 D D D 上的积分:

∬ D f ( x , y ) d x d y \iint_D f(x,y) \mathrm{d}x \mathrm{d}y Df(x,y)dxdy

如果我们进行变量替换 x = u ( x , y ) , y = v ( x , y ) x = u(x,y), y = v(x,y) x=u(x,y),y=v(x,y),那么积分变为:

∬ D ’ f ( u , v ) ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v \iint_{D’} f(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \mathrm{d}u \mathrm{d}v Df(u,v) (u,v)(x,y) dudv

其中 ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ \left| \frac{\partial(x,y)}{\partial(u,v)} \right| (u,v)(x,y) 就是雅可比行列式。它描述了变量替换对积分的影响,即面积或体积的变化率。

另一个应用是坐标系转换。例如,我们要计算一个三元函数 f ( x , y , z ) f(x,y,z) f(x,y,z) 在球坐标系下的积分:

∭ V f ( x , y , z ) d x d y d z \iiint_V f(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z Vf(x,y,z)dxdydz

如果我们进行坐标系转换 x = r sin ⁡ θ cos ⁡ ϕ , y = r sin ⁡ θ sin ⁡ ϕ , z = r cos ⁡ θ x = r \sin\theta \cos\phi, y = r \sin\theta \sin\phi, z = r \cos\theta x=rsinθcosϕ,y=rsinθsinϕ,z=rcosθ,那么积分变为:

∭ V ’ f ( r , θ , ϕ ) ∣ ∂ ( x , y , z ) ∂ ( r , θ , ϕ ) ∣ d r d θ d ϕ \iiint_{V’} f(r,\theta,\phi) \left| \frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} \right| \mathrm{d}r \mathrm{d}\theta \mathrm{d}\phi Vf(r,θ,ϕ) (r,θ,ϕ)(x,y,z) drdθdϕ

其中 ∣ ∂ ( x , y , z ) ∂ ( r , θ , ϕ ) ∣ \left| \frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} \right| (r,θ,ϕ)(x,y,z) 就是雅可比行列式。它描述了坐标系转换对积分的影响,即体积的变化率。

总之,雅可比行列式在多元积分中有着广泛的应用,它可以帮助我们解决各种变量替换和坐标系转换的问题。
多元积分中雅可比式的应用可以通过以下例子来说明:

假设有一个二元函数 f ( x , y ) f(x,y) f(x,y),定义在一个矩形区域 D D D 上,其中 D D D 的边界由四个点 ( a , b ) , ( a , c ) , ( d , b ) , ( d , c ) (a,b),(a,c),(d,b),(d,c) (a,b),(a,c),(d,b),(d,c) 组成。现在我们希望计算函数 f ( x , y ) f(x,y) f(x,y) 在区域 D D D 上的积分:

∬ D f ( x , y ) d x d y \iint_D f(x,y) dxdy Df(x,y)dxdy

为了进行积分,我们需要将积分区域 D D D 转化为一个标准矩形区域 R R R,即一个边长分别为 1 1 1 的正方形。为了实现这一点,我们可以进行如下的变量替换:

u = x − a d − a , v = y − b c − b u = \frac{x-a}{d-a}, \quad v = \frac{y-b}{c-b} u=daxa,v=cbyb

这个变量替换将矩形区域 D D D 映射到了标准矩形区域 R R R 上,其中 u , v u,v u,v 分别是标准矩形区域 R R R 上的坐标。我们可以通过求解雅可比矩阵来计算变量替换的雅可比式:

J = ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} J=(uxuyvxvy)

根据变量替换的定义,我们可以得到:

( x   y ) = ( a   b ) + ( d − a 0 0 c − b ) ( u   v ) \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} a \ b \end{pmatrix} + \begin{pmatrix} d-a & 0 \\ 0 & c-b \end{pmatrix} \begin{pmatrix} u \ v \end{pmatrix} (x y)=(a b)+(da00cb)(u v)

因此,雅可比矩阵可以表示为:

J = ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) = ( d − a 0 0 c − b ) J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} d-a & 0 \\ 0 & c-b \end{pmatrix} J=(uxuyvxvy)=(da00cb)

根据雅可比式的定义,我们可以得到:

d x d y = ∣ det ⁡ ( J ) ∣ d u d v = ( d − a ) ( c − b ) d u d v dxdy = \left|\det(J)\right| dudv = (d-a)(c-b) dudv dxdy=det(J)dudv=(da)(cb)dudv

讨论x,du对x造成的变化是dx;dv对x造成的变化也是dx,但是根据雅可比式的定义方法,用导数可以描述单位变量变化对函数的影响,所以,这个矩阵变化将u和v的变化映射给k了函数x,y;单位变量的变化对于x,y的影响线性叠加可以得到一个变化的合向量: ( ∂ x ∂ u d u + ∂ x ∂ v d v , ∂ y ∂ u d u + ∂ y ∂ v d v ) (\frac{\partial x}{\partial u}du+\frac{\partial x}{\partial v}dv , \frac{\partial y}{\partial u}du+ \frac{\partial y}{\partial v}dv ) (uxdu+vxdv,uydu+vydv)
也就是经过这个矩阵变化完了的x,y.
从初始的(u,v)变化到最后的(x,y)的面积缩放是这个雅可比行列式.
面积表征为坐标相乘的形式 , u v 相乘得到的是一个数值 , 这个数值和 x ∗ y 的映射就为这个描述面积变化的行列式 . 面积表征为坐标相乘的形式,uv相乘得到的是一个数值,这个数值和x*y的映射就为这个描述面积变化的行列式. 面积表征为坐标相乘的形式,uv相乘得到的是一个数值,这个数值和xy的映射就为这个描述面积变化的行列式.
综上, d x d y = ∣ J ∣ d u d v 描述的就是这个坐标数量表征的变化 dxdy = |J|dudv 描述的就是这个坐标数量表征的变化 dxdy=Jdudv描述的就是这个坐标数量表征的变化
逻辑推导过程

  1. 描述u,v到x,y
  2. u,v都会对x,y单独影响
  3. 这个变化用矩阵描述出来后,行列式描述的是面积变化,面积变化和uv ,xy相乘呈现应该是线性关系
  4. 所有xy乘积就可以用uv来映射

因此,原积分可以转化为:

∬ D f ( x , y ) d x d y = ∬ R f ( u , v ) ( d − a ) ( c − b ) d u d v \iint_D f(x,y) dxdy = \iint_R f(u,v) (d-a)(c-b) dudv Df(x,y)dxdy=Rf(u,v)(da)(cb)dudv

这个积分可以通过对标准矩形区域 R R R 进行数值积分来计算。

上述就是对二重积分换元法的介绍和直观解释

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值