神经网络预测结果可视化

本文介绍了如何使用TensorFlow构建的简单三层神经网络进行训练,并通过可视化工具展示训练过程与预测结果。通过散点图展示原始数据,用红色曲线描绘预测数据,随着训练的进行,神经网络逐渐逼近正确数据点。
摘要由CSDN通过智能技术生成

用tensorflow建造一个简单的神经网络中建立了一个简单的三层(输入层,隐藏层,输出层)的神经网络。这篇文章主要说怎样将我们构建的神经网络训练的过程以及结果可视化。
用tensorflow建造一个简单的神经网络中建立神经网络的代码

import tensorflow as tf
import numpy as np


def add_layer(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random_uniform([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
loss = tf
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值