在用tensorflow建造一个简单的神经网络中建立了一个简单的三层(输入层,隐藏层,输出层)的神经网络。这篇文章主要说怎样将我们构建的神经网络训练的过程以及结果可视化。
在用tensorflow建造一个简单的神经网络中建立神经网络的代码
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_uniform([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
loss = tf