一、excel中数据分析功能做线性回归练习
(一)用excel打开下载的身高体重文件夹。

(二)添加数据分析的工具:
1.文件—更多—选项
2.点击加载项,后点击跳转
3.勾选分析工具库和分析工具库—VBA,后点击确定

4.点击查看右上角有一个数据分析,则添加成功

(三)用excel表完成线性回归
1.点击数据—数据分析—回归,点击确定

2.选择体重做Y值,身高X值,选取20个数据
输入自己适合的输出区域,选择线性拟合图,点击确定

3.输出图表如下

4.点击选择原始数据,鼠标右键。选择添加趋势线,设置趋势线格式为线性,点击选择显示公式,显示R平方值

5.以同样的方法选择200个数据

6.其图像数据如下

7.继续选择2000个数据

8.获得回归图像、方程、相关系数如下

二、jupyter编程(不借助第三方库),最小二乘法,重做第1题
(一)打开jupyter notebook程序

(二)新建文件
(三)代码:
# 导入所需的模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
p=pd.read_excel('D:\\Kek\\w.xls','weights_heights')
#读取数据行数
p1=p.head(20)
x=p1["Height"]
y=p1["Weight"]
# 数据处理
# sklearn 拟合输入输出一般都是二维数组,这里将一维转换为二维。
y = np.array(y).reshape(-1, 1)
x = np.array(x).reshape(-1, 1)
# 拟合
reg = LinearRegression()
reg.fit(x,y)
a = reg.coef_[0][0] # 系数
b = reg.intercept_[0] # 截距
print('拟合的方程为:Y = %.4fX + (%.4f)' % (a, b))
c=reg.score(x,y) # 相关系数
print(f'相关回归系数为%.4f'%c)
# 可视化
prediction = reg.predict(y)
# 根据高度,按照拟合的曲线预测温度值
plt.xlabel('身高')
plt.ylabel('体重')
plt.scatter(x,y)
y1 = a*x + b
plt.plot(x,y1,c='r')
运行结果如下:

(四)修改如下地方代码为200 2000

运行结果:


四.总结
本次考察了excel的线性相关操作,了解了excel的强大功能,并用jupyter同时做了线性相关,做了比较。主要出现的问题就是excel文件导入的问题路径容易不正确导致代码报错。
五.参考博客
https://blog.csdn.net/weixin_46129506/article/details/120468232
https://blog.csdn.net/weixin_56102526/article/details/12049515