函数与极限Day7

1.函数

1.1 定义

函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作
y = f ( x ) , x ∈ X y=f\left( x\right) ,x\in X y=f(x),xX
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。

函数的两要素是指函数的定义域和值域。

定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。

值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。

确定定义域和值域的方法

  1. 定义域

    • 代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
    • 图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
  2. 值域

    • 代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。
    • 图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。
      常见函数类型
  3. 线性函数:
    f ( x ) = a x + b f(x)=ax+b f(x)=ax+b
    ,其中 a 和 b 是常数。

  4. 多项式函数:
    f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_{n}x^{n}+a_{n−1}x^{n−1}+⋯+a_{1}x+a_{0} f(x)=anxn+an1xn1++a1x+a0
    ,其中 ai是常数。

  5. 指数函数:
    f ( x ) = a x f(x)=a^{x} f(x)=ax
    ,其中 a>0 且 a≠1。

  6. 对数函数:
    f ( x ) = l o g ⁡ a ( x ) f(x)=log_{⁡a}(x) f(x)=loga(x)
    ,其中 a>0 且 a≠1。

  7. 三角函数:如正弦函数 f(x)=sin⁡(x),余弦函数 f(x)=cos⁡(x),正切函数 f(x)=tan⁡(x)等。

  8. 反三角函数:如反正弦函数 f(x)=arcsin⁡(x),反余弦函数 f(x)=arccos⁡(x),反正切函数 f(x)=arctan⁡(x)等。

  9. 符号函数:
    s g n ( x ) = { 1 x > 0 0 x = 0 − 1 x < 0 sgn(x)=\begin{cases}1 & x>0\\0 & x=0 \\ -1 & x<0\end{cases} sgn(x)= 101x>0x=0x<0

1.2函数的特性

1.2.1 有界性

上界:存在一个实数k1,使得
∃ k 1 , f ( x ) ≤ k \exists k_{1},f(x) \leq k k1,f(x)k
下界:存在一个实数k2,使得
∃ k 2 , f ( x ) ≥ k \exists k_{2},f(x) \geq k k2,f(x)k
注:特殊符号说明:
∀ :任给一个数, ∃ :存在一个数 \forall :任给一个数,\exists:存在一个数 :任给一个数,:存在一个数
有界:

一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
m ≤ f ( x ) ≤ M m≤f(x)≤M mf(x)M
其中:

  • M 称为函数的上界。
  • m 称为函数的下界。

一个函数有界的充要条件:既有上界,又有下界。

分类

根据函数的有界性,可以分为以下几种情况:

  1. 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
  2. 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性

定义

一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:

  • 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
  • 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
  • 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
  • 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性

定义

一个函数 f(x) 在其定义域 D 上称为:

  • 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
  • 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性

定义

一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

1.3 反函数

定义

给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数。
满足以下两个条件:

  1. 对于 X 中的每一个x,有
    f − 1 ( f ( x ) ) = x f^{−1}(f(x))=x f1(f(x))=x

  2. 对于 Y 中的每一个 y,有
    f ( f − 1 ( y ) ) = y f(f^{−1}(y))=y f(f1(y))=y

注意:原函数和反函数是关于y=x对称的。

2.极限

2.1 数列极限

定义

一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
∣ a n − L ∣ < ϵ ∣a_n−L∣<ϵ anL∣<ϵ
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
lim ⁡ n → ∞ a n = L \lim _{n\rightarrow \infty }a_{n}=L nliman=L
如果数列不收敛于任何有限值,则称该数列为发散的。

理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质

  1. 唯一性:如果数列 {an}收敛,则其极限是唯一的。

  2. 有界性:如果数列 {an}收敛,则它是有界的。

  3. 保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
    lim ⁡ n → ∞ a n ≤ lim ⁡ n → ∞ b n \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n} nlimannlimbn

  4. 四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。

极限的判定

  1. 直接法

    • 通过分析数列的通项公式,直接计算其极限。

    • 例如,数列
      { a n } = ( n 2 + 1 2 n 2 + 3 ) \{a_{n}\}=(\dfrac{n^{2}+1}{2n^{2}+3}) {an}=(2n2+3n2+1)
      ,计算其极限:
      lim ⁡ n → ∞ n 2 + 1 2 n 2 + 3 = lim ⁡ n → ∞ 1 + 1 n 2 2 + 3 n 2 = 1 2 \lim _{n\rightarrow \infty }\dfrac{n^{2}+1}{2n^{2}+3}=\lim _{n\rightarrow \infty }\dfrac{1+\dfrac{1}{n^{2}}}{2+\dfrac{3}{n^2}}=\dfrac{1}{2} nlim2n2+3n2+1=nlim2+n231+n21=21

  2. 夹逼定理

    • 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
      lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = L \lim _{n\rightarrow \infty }a_{n}= \lim _{n\rightarrow \infty }c_{n}=L nliman=nlimcn=L
      ,则
      lim ⁡ n → ∞ b n = L \lim _{n\rightarrow \infty }b_{n}=L nlimbn=L

      2.2 函数的极限

定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有
∣ f ( x ) − L ∣ < ϵ ∣f(x)−L∣<ϵ f(x)L∣<ϵ
则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作
lim ⁡ x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L xalimf(x)=L
在这里插入图片描述

性质

  1. 唯一性:如果极限存在,那么它是唯一的。

  2. 局部有界性:如果
    lim ⁡ x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L xalimf(x)=L
    ,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即
    ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M

  3. 局部保号性:如果
    lim ⁡ x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L xalimf(x)=L
    且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。

极限的计算

  1. 代入法:如果 f(x) 在 x=a 处连续,则
    lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a }f(x)=f(a) xalimf(x)=f(a)

  2. 极限运算法则:如果
    lim ⁡ x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L xalimf(x)=L

    lim ⁡ x → a g ( x ) = M \lim _{x\rightarrow a }g(x)=M xalimg(x)=M
    ,则

    • lim ⁡ x → a [ f ( x ) ± g ( x ) ] = L ± M \lim _{x\rightarrow a }[f(x) \pm g(x)] =L\pm M xalim[f(x)±g(x)]=L±M

    • lim ⁡ x → a [ f ( x ) ⋅ g ( x ) ] = L ⋅ M \lim _{x\rightarrow a }[f(x) \cdot g(x)] =L\cdot M xalim[f(x)g(x)]=LM

    • lim ⁡ x → a f ( x ) g ( x ) = L M (如果 M ≠ 0 ) \lim _{x\rightarrow a }\dfrac{f(x)}{g(x)} =\dfrac{L}{M}(如果 M≠0) xalimg(x)f(x)=ML(如果M=0

  3. 夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
    lim ⁡ x → a f ( x ) = lim ⁡ x → a h ( x ) = L \lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L xalimf(x)=xalimh(x)=L
    ,则
    lim ⁡ x → a g ( x ) = L \lim _{x\rightarrow a }g(x)=L xalimg(x)=L

单侧极限

  1. 左极限:如果
    lim ⁡ x → a − f ( x ) = L \lim _{x\rightarrow a^{-}}f(x)=L xalimf(x)=L
    ,则称 L 为 f(x) 在 x 趋近于 a 时的左极限。

  2. 右极限:如果
    lim ⁡ x → a + f ( x ) = L \lim _{x\rightarrow a^{+}}f(x)=L xa+limf(x)=L
    ,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。

如果极限
lim ⁡ x → a f ( x ) \lim _{x\rightarrow a }f(x) xalimf(x)
存在,则左极限和右极限都存在且相等

2.3 无穷大与无穷小

  1. 无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
    lim ⁡ x → a f ( x ) = ∞ \lim _{x\rightarrow a }f(x)=\infty xalimf(x)=
    无穷大分为正无穷大和负无穷大。

    无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

    无穷大乘无穷大肯定为无穷大。

  2. 无穷小:如果
    lim ⁡ x → a f ( x ) = 0 或 lim ⁡ x → ∞ f ( x ) = 0 \lim _{x\rightarrow a }f(x)=0或\lim _{x\rightarrow \infty }f(x)=0 xalimf(x)=0xlimf(x)=0
    ,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。

    运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

  1. 高阶无穷小

    设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。

    如果
    lim ⁡ x → a α β = 0 \lim _{x\rightarrow a }\dfrac{α}{β}=0 xalimβα=0
    ,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。

    如:
    lim ⁡ x → 0 x 2 3 x = 0 \lim _{x\rightarrow 0 }\dfrac{x^{2}}{3x}=0 x0lim3xx2=0
    x2比3x收敛速度快,则x2是3x的高阶无穷小,记作
    x 2 = o ( 3 x ) x^{2}=o(3x) x2=o(3x)

  2. 低阶无穷小

设 α 和 β 是两个无穷小量。

如果
lim ⁡ x → a α β = ∞ \lim _{x\rightarrow a }\dfrac{α}{β}=\infty xalimβα=
,则称 α 是 β 的低阶无穷小。

  1. 同阶无穷小

    设 α 和 β 是两个无穷小量。

    如果
    lim ⁡ x → a α β = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β}=c(其中 c 是一个非零常数) xalimβα=c(其中c是一个非零常数)
    ,则称 α 和 β 是同阶无穷小。

  2. 等价无穷小

    • 设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。

    • 如果
      lim ⁡ x → a α β = 1 \lim _{x\rightarrow a }\dfrac{α}{β}=1 xalimβα=1
      ,则称 α 和 β 是等价无穷小,记作 α∼β。

  3. k阶无穷小

    • 设 α和 β 是两个无穷小量,且
      β = o ( x k ) 当 x → 0 β=o(x^{k}) 当 x→0 β=o(xk)x0

    • 如果
      lim ⁡ x → a α β k = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β^{k}}=c(其中 c 是一个非零常数) xalimβkα=c(其中c是一个非零常数)
      ,则称 α 是 β 的 k 阶无穷小。

2.4 无穷大极限

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

具体分类:

  1. 当 x→+∞ 时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
      lim ⁡ x → + ∞ f ( x ) = A \lim _{x\rightarrow +\infty }f(x)=A x+limf(x)=A
  2. 当 x→−∞时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
      lim ⁡ x → − ∞ f ( x ) = A \lim _{x\rightarrow -\infty }f(x)=A xlimf(x)=A

2.5 极限存在准则

2.5.1 单调有界准则

如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
洛必达法则:

假设 f(x) 和 g(x) 是两个函数,并且在某个点 a 的某个去心邻域内可导(即 f′(x)和 g′(x)存在),并且 g′(x)≠0在这个去心邻域内。如果:

  1. lim ⁡ ⁡ x → a f ( x ) = 0 且 lim ⁡ ⁡ x → a g ( x ) = 0 \lim _{⁡x→a}f(x)=0 且 \lim⁡ _{x→a}g(x)=0 xalimf(x)=0limxag(x)=0

    ,或者

  2. lim ⁡ ⁡ x → a f ( x ) = ± ∞ 且 lim ⁡ ⁡ x → a g ( x ) = ± ∞ \lim⁡ _{x→a}f(x)=±∞ 且 \lim⁡ _{x→a}g(x)=±∞ limxaf(x)=±limxag(x)=±

那么:
lim ⁡ ⁡ x → a f ( x ) g ( x ) = lim ⁡ ⁡ x → a f ′ ( x ) g ′ ( x ) \lim⁡ _{x→a}\dfrac{f(x)}{g(x)}=\lim⁡ _{x→a}\dfrac{f′(x)}{g′(x)} limxag(x)f(x)=limxag(x)f(x)
如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。

2.5.2 夹逼定理

如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
lim ⁡ x → a f ( x ) = lim ⁡ x → a h ( x ) = L \lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L xalimf(x)=xalimh(x)=L
,则
lim ⁡ x → a g ( x ) = L \lim _{x\rightarrow a }g(x)=L xalimg(x)=L
例子

当x→0时,
lim ⁡ x → 0 s i n x x = 1 \lim _{x\rightarrow 0 }\dfrac{sinx}{x}=1 x0limxsinx=1
可以使用夹逼定理证明:

根据下图可知:在单位圆上,当x趋近于0时,假设x 是从原点到角度 x 的弧长,而 sin⁡(x)是从原点到角度 x的弦长,tan(x) 是从原点到角度 xx 的切线长度,从而:

sinx <x< tanx,同除以sinx,
1 < x s i n x < t a n x s i n x = 1 c o s x 1<\dfrac{x}{sinx}<\dfrac{tanx}{sinx}=\dfrac{1}{cosx} 1<sinxx<sinxtanx=cosx1
分子分母取倒数,
c o s x < s i n x x < 1 cosx<\dfrac{sinx}{x}<1 cosx<xsinx<1
由于
lim ⁡ x → 0 c o s x = 1 , lim ⁡ x → 0 1 = 1 \lim _{x\rightarrow 0 }cosx=1,\lim _{x\rightarrow 0 }1=1 x0limcosx=1,x0lim1=1
所以根据夹逼定理,
lim ⁡ x → 0 s i n x x = 1 \lim _{x\rightarrow 0 }\dfrac{sinx}{x}=1 x0limxsinx=1

3.函数的连续性

3.1 连续性

在某点的连续性:

设函数 f(x)在点 x=a的某个邻域内有定义。

如果
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a }f(x)=f(a) xalimf(x)=f(a)
,则称函数 f(x) 在点 x=a 处连续。

归纳起来:
{ 1. 在 a 处函数有极限 2. 在 a 处函数有定义 3. 在 a 处极限等于函数值 \begin{cases}1.在a处函数有极限\\2.在a处函数有定义\\3.在a处极限等于函数值\end{cases} 1.a处函数有极限2.a处函数有定义3.a处极限等于函数值
左连续

设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。

如果
lim ⁡ x → a − f ( x ) = f ( a ) \lim _{x\rightarrow a^{-} }f(x)=f(a) xalimf(x)=f(a)
,则称函数 f(x) 在点 x=a处左连续。

右连续

设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。

如果
lim ⁡ x → a + f ( x ) = f ( a ) \lim _{x\rightarrow a^{+} }f(x)=f(a) xa+limf(x)=f(a)
,则称函数 f(x)在点 x=a 处右连续。

连续的充要条件

函数连续的充要条件:函数左右连续。

在区间的连续性

如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。

如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续。
性质

  • 局部性质
    • 如果函数 f(x) 在点 x=a 处连续,则 f(x)在 x=a的某个邻域内有界。
  • 全局性质
    • 如果函数 f(x) 在区间 [a,b]上连续,则 f(x)在该区间上有界。
    • 如果函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在该区间上达到最大值和最小值。
    • 如果函数 f(x)在区间 [a,b]上连续,并且 f(a)和 f(b)异号,则存在 c∈(a,b)使得 f©=0(零点定理,后边会讲)。

3.2 不连续点

定义
{ 1. 在 a 处函数极限不存在 2. 在 a 处函数无定义 3. 在 a 处极限不等于函数值 \begin{cases}1.在a处函数极限不存在\\2.在a处函数无定义\\3.在a处极限不等于函数值\end{cases} 1.a处函数极限不存在2.a处函数无定义3.a处极限不等于函数值
可去不连续点

如果
lim ⁡ x → a f ( x ) \lim _{x\rightarrow a }f(x) xalimf(x)
存在且有限,但 f(a) 不存在或
f ( a ) ≠ lim ⁡ x → a f ( x ) f(a)≠\lim _{x\rightarrow a }f(x) f(a)=xalimf(x)
,则称 x=a 是 f(x)的可去不连续点。
跳跃不连续点

如果
lim ⁡ x → a − f ( x ) 和 lim ⁡ x → a + f ( x ) \lim _{x\rightarrow a^{-} }f(x)和\lim _{x\rightarrow a^{+} }f(x) xalimf(x)xa+limf(x)
都存在且有极限,但
lim ⁡ x → a − f ( x ) ≠ lim ⁡ x → a + f ( x ) \lim _{x\rightarrow a^{-}}f(x)≠\lim _{x\rightarrow a^{+}}f(x) xalimf(x)=xa+limf(x)
,则称 x=a 是 f(x) 的跳跃不连续点。

函数
f ( x ) = { 1 x ≥ 0 0 x < 0 f(x) = \begin{cases} 1 & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={10x0x<0

在 x=0 处,左极限
lim ⁡ x → 0 − f ( x ) = 0 \lim _{x\rightarrow 0^{-}}f(x)=0 x0limf(x)=0
,右极限
lim ⁡ x → 0 + f ( x ) = 1 \lim _{x\rightarrow 0^{+}}f(x)=1 x0+limf(x)=1
,函数值 f(0)=1。

因此,函数在 x=0处是跳跃不连续点。

无穷不连续点

如果
lim ⁡ x → a f ( x ) \lim _{x\rightarrow a }f(x) xalimf(x)
不存在或为无穷大,则称 x=a是 f(x) 的无穷不连续点。

如:y=tanx,x在π/2处为无穷大,所以x=π/2是 f(x) 的无穷不连续点。

3.3 闭区间连续函数性质

零点定理:(后边会用)

设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f©=0。

介值定理:(后边会用)

设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min⁡(f(a),f(b))<k<max⁡(f(a),f(b))),存在 c∈(a,b) 使得 f©=k。

零点定理与介值定理的关系

零点定理是介值定理的特例:

  • 零点定理可以看作是介值定理在 k=0时的特例。
  • 如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f©=0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值