1.函数
1.1 定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作
y
=
f
(
x
)
,
x
∈
X
y=f\left( x\right) ,x\in X
y=f(x),x∈X
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。
函数的两要素是指函数的定义域和值域。
定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。
值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。
确定定义域和值域的方法
-
定义域:
- 代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
- 图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
-
值域:
- 代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。
- 图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。
常见函数类型
-
线性函数:
f ( x ) = a x + b f(x)=ax+b f(x)=ax+b
,其中 a 和 b 是常数。 -
多项式函数:
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_{n}x^{n}+a_{n−1}x^{n−1}+⋯+a_{1}x+a_{0} f(x)=anxn+an−1xn−1+⋯+a1x+a0
,其中 ai是常数。 -
指数函数:
f ( x ) = a x f(x)=a^{x} f(x)=ax
,其中 a>0 且 a≠1。 -
对数函数:
f ( x ) = l o g a ( x ) f(x)=log_{a}(x) f(x)=loga(x)
,其中 a>0 且 a≠1。 -
三角函数:如正弦函数 f(x)=sin(x),余弦函数 f(x)=cos(x),正切函数 f(x)=tan(x)等。
-
反三角函数:如反正弦函数 f(x)=arcsin(x),反余弦函数 f(x)=arccos(x),反正切函数 f(x)=arctan(x)等。
-
符号函数:
s g n ( x ) = { 1 x > 0 0 x = 0 − 1 x < 0 sgn(x)=\begin{cases}1 & x>0\\0 & x=0 \\ -1 & x<0\end{cases} sgn(x)=⎩ ⎨ ⎧10−1x>0x=0x<0
1.2函数的特性
1.2.1 有界性
上界:存在一个实数k1,使得
∃
k
1
,
f
(
x
)
≤
k
\exists k_{1},f(x) \leq k
∃k1,f(x)≤k
下界:存在一个实数k2,使得
∃
k
2
,
f
(
x
)
≥
k
\exists k_{2},f(x) \geq k
∃k2,f(x)≥k
注:特殊符号说明:
∀
:任给一个数,
∃
:存在一个数
\forall :任给一个数,\exists:存在一个数
∀:任给一个数,∃:存在一个数
有界:
一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
m
≤
f
(
x
)
≤
M
m≤f(x)≤M
m≤f(x)≤M
其中:
- M 称为函数的上界。
- m 称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
分类
根据函数的有界性,可以分为以下几种情况:
- 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
- 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性
定义
一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:
- 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
- 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
- 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
- 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性
定义
一个函数 f(x) 在其定义域 D 上称为:
- 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
- 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性
定义
一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
f
(
x
+
T
)
=
f
(
x
)
f(x+T)=f(x)
f(x+T)=f(x)
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。
1.3 反函数
定义
给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数。
满足以下两个条件:
-
对于 X 中的每一个x,有
f − 1 ( f ( x ) ) = x f^{−1}(f(x))=x f−1(f(x))=x -
对于 Y 中的每一个 y,有
f ( f − 1 ( y ) ) = y f(f^{−1}(y))=y f(f−1(y))=y
注意:原函数和反函数是关于y=x对称的。
2.极限
2.1 数列极限
定义
一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
∣
a
n
−
L
∣
<
ϵ
∣a_n−L∣<ϵ
∣an−L∣<ϵ
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
lim
n
→
∞
a
n
=
L
\lim _{n\rightarrow \infty }a_{n}=L
n→∞liman=L
如果数列不收敛于任何有限值,则称该数列为发散的。
理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质
-
唯一性:如果数列 {an}收敛,则其极限是唯一的。
-
有界性:如果数列 {an}收敛,则它是有界的。
-
保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
lim n → ∞ a n ≤ lim n → ∞ b n \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n} n→∞liman≤n→∞limbn -
四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
极限的判定
-
直接法:
-
通过分析数列的通项公式,直接计算其极限。
-
例如,数列
{ a n } = ( n 2 + 1 2 n 2 + 3 ) \{a_{n}\}=(\dfrac{n^{2}+1}{2n^{2}+3}) {an}=(2n2+3n2+1)
,计算其极限:
lim n → ∞ n 2 + 1 2 n 2 + 3 = lim n → ∞ 1 + 1 n 2 2 + 3 n 2 = 1 2 \lim _{n\rightarrow \infty }\dfrac{n^{2}+1}{2n^{2}+3}=\lim _{n\rightarrow \infty }\dfrac{1+\dfrac{1}{n^{2}}}{2+\dfrac{3}{n^2}}=\dfrac{1}{2} n→∞lim2n2+3n2+1=n→∞lim2+n231+n21=21
-
-
夹逼定理:
定义
设函数 f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有
∣
f
(
x
)
−
L
∣
<
ϵ
∣f(x)−L∣<ϵ
∣f(x)−L∣<ϵ
则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作
lim
x
→
a
f
(
x
)
=
L
\lim _{x\rightarrow a }f(x)=L
x→alimf(x)=L
性质
-
唯一性:如果极限存在,那么它是唯一的。
-
局部有界性:如果
lim x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L x→alimf(x)=L
,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即
∣ f ( x ) ∣ ≤ M |f(x)|\leq M ∣f(x)∣≤M -
局部保号性:如果
lim x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L x→alimf(x)=L
且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。
极限的计算
-
代入法:如果 f(x) 在 x=a 处连续,则
lim x → a f ( x ) = f ( a ) \lim _{x\rightarrow a }f(x)=f(a) x→alimf(x)=f(a)
。 -
极限运算法则:如果
lim x → a f ( x ) = L \lim _{x\rightarrow a }f(x)=L x→alimf(x)=L
和
lim x → a g ( x ) = M \lim _{x\rightarrow a }g(x)=M x→alimg(x)=M
,则-
lim x → a [ f ( x ) ± g ( x ) ] = L ± M \lim _{x\rightarrow a }[f(x) \pm g(x)] =L\pm M x→alim[f(x)±g(x)]=L±M
-
lim x → a [ f ( x ) ⋅ g ( x ) ] = L ⋅ M \lim _{x\rightarrow a }[f(x) \cdot g(x)] =L\cdot M x→alim[f(x)⋅g(x)]=L⋅M
-
lim x → a f ( x ) g ( x ) = L M (如果 M ≠ 0 ) \lim _{x\rightarrow a }\dfrac{f(x)}{g(x)} =\dfrac{L}{M}(如果 M≠0) x→alimg(x)f(x)=ML(如果M=0)
-
-
夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
lim x → a f ( x ) = lim x → a h ( x ) = L \lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L x→alimf(x)=x→alimh(x)=L
,则
lim x → a g ( x ) = L \lim _{x\rightarrow a }g(x)=L x→alimg(x)=L
单侧极限
-
左极限:如果
lim x → a − f ( x ) = L \lim _{x\rightarrow a^{-}}f(x)=L x→a−limf(x)=L
,则称 L 为 f(x) 在 x 趋近于 a 时的左极限。 -
右极限:如果
lim x → a + f ( x ) = L \lim _{x\rightarrow a^{+}}f(x)=L x→a+limf(x)=L
,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。
如果极限
lim
x
→
a
f
(
x
)
\lim _{x\rightarrow a }f(x)
x→alimf(x)
存在,则左极限和右极限都存在且相等。
2.3 无穷大与无穷小
-
无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
lim x → a f ( x ) = ∞ \lim _{x\rightarrow a }f(x)=\infty x→alimf(x)=∞
无穷大分为正无穷大和负无穷大。无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;
无穷大乘无穷大肯定为无穷大。
-
无穷小:如果
lim x → a f ( x ) = 0 或 lim x → ∞ f ( x ) = 0 \lim _{x\rightarrow a }f(x)=0或\lim _{x\rightarrow \infty }f(x)=0 x→alimf(x)=0或x→∞limf(x)=0
,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别。
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。
如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。
-
高阶无穷小
设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。
如果
lim x → a α β = 0 \lim _{x\rightarrow a }\dfrac{α}{β}=0 x→alimβα=0
,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。如:
lim x → 0 x 2 3 x = 0 \lim _{x\rightarrow 0 }\dfrac{x^{2}}{3x}=0 x→0lim3xx2=0
x2比3x收敛速度快,则x2是3x的高阶无穷小,记作
x 2 = o ( 3 x ) x^{2}=o(3x) x2=o(3x) -
低阶无穷小
设 α 和 β 是两个无穷小量。
如果
lim
x
→
a
α
β
=
∞
\lim _{x\rightarrow a }\dfrac{α}{β}=\infty
x→alimβα=∞
,则称 α 是 β 的低阶无穷小。
-
同阶无穷小
设 α 和 β 是两个无穷小量。
如果
lim x → a α β = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β}=c(其中 c 是一个非零常数) x→alimβα=c(其中c是一个非零常数)
,则称 α 和 β 是同阶无穷小。 -
等价无穷小
-
设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。
-
如果
lim x → a α β = 1 \lim _{x\rightarrow a }\dfrac{α}{β}=1 x→alimβα=1
,则称 α 和 β 是等价无穷小,记作 α∼β。
-
-
k阶无穷小
-
设 α和 β 是两个无穷小量,且
β = o ( x k ) 当 x → 0 β=o(x^{k}) 当 x→0 β=o(xk)当x→0 -
如果
lim x → a α β k = c (其中 c 是一个非零常数) \lim _{x\rightarrow a }\dfrac{α}{β^{k}}=c(其中 c 是一个非零常数) x→alimβkα=c(其中c是一个非零常数)
,则称 α 是 β 的 k 阶无穷小。
-
2.4 无穷大极限
函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。
具体分类:
-
当 x→+∞ 时的极限:
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
lim x → + ∞ f ( x ) = A \lim _{x\rightarrow +\infty }f(x)=A x→+∞limf(x)=A
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
-
当 x→−∞时的极限:
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
lim x → − ∞ f ( x ) = A \lim _{x\rightarrow -\infty }f(x)=A x→−∞limf(x)=A
- 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
2.5 极限存在准则
2.5.1 单调有界准则
如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
洛必达法则:
假设 f(x) 和 g(x) 是两个函数,并且在某个点 a 的某个去心邻域内可导(即 f′(x)和 g′(x)存在),并且 g′(x)≠0在这个去心邻域内。如果:
-
lim x → a f ( x ) = 0 且 lim x → a g ( x ) = 0 \lim _{x→a}f(x)=0 且 \lim _{x→a}g(x)=0 x→alimf(x)=0且limx→ag(x)=0
,或者
-
lim x → a f ( x ) = ± ∞ 且 lim x → a g ( x ) = ± ∞ \lim _{x→a}f(x)=±∞ 且 \lim _{x→a}g(x)=±∞ limx→af(x)=±∞且limx→ag(x)=±∞
,
那么:
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
\lim _{x→a}\dfrac{f(x)}{g(x)}=\lim _{x→a}\dfrac{f′(x)}{g′(x)}
limx→ag(x)f(x)=limx→ag′(x)f′(x)
如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。
2.5.2 夹逼定理
如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
lim
x
→
a
f
(
x
)
=
lim
x
→
a
h
(
x
)
=
L
\lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L
x→alimf(x)=x→alimh(x)=L
,则
lim
x
→
a
g
(
x
)
=
L
\lim _{x\rightarrow a }g(x)=L
x→alimg(x)=L
例子
当x→0时,
lim
x
→
0
s
i
n
x
x
=
1
\lim _{x\rightarrow 0 }\dfrac{sinx}{x}=1
x→0limxsinx=1
可以使用夹逼定理证明:
根据下图可知:在单位圆上,当x趋近于0时,假设x 是从原点到角度 x 的弧长,而 sin(x)是从原点到角度 x的弦长,tan(x) 是从原点到角度 xx 的切线长度,从而:
sinx <x< tanx,同除以sinx,
1
<
x
s
i
n
x
<
t
a
n
x
s
i
n
x
=
1
c
o
s
x
1<\dfrac{x}{sinx}<\dfrac{tanx}{sinx}=\dfrac{1}{cosx}
1<sinxx<sinxtanx=cosx1
分子分母取倒数,
c
o
s
x
<
s
i
n
x
x
<
1
cosx<\dfrac{sinx}{x}<1
cosx<xsinx<1
由于
lim
x
→
0
c
o
s
x
=
1
,
lim
x
→
0
1
=
1
\lim _{x\rightarrow 0 }cosx=1,\lim _{x\rightarrow 0 }1=1
x→0limcosx=1,x→0lim1=1
所以根据夹逼定理,
lim
x
→
0
s
i
n
x
x
=
1
\lim _{x\rightarrow 0 }\dfrac{sinx}{x}=1
x→0limxsinx=1
3.函数的连续性
3.1 连续性
在某点的连续性:
设函数 f(x)在点 x=a的某个邻域内有定义。
如果
lim
x
→
a
f
(
x
)
=
f
(
a
)
\lim _{x\rightarrow a }f(x)=f(a)
x→alimf(x)=f(a)
,则称函数 f(x) 在点 x=a 处连续。
归纳起来:
{
1.
在
a
处函数有极限
2.
在
a
处函数有定义
3.
在
a
处极限等于函数值
\begin{cases}1.在a处函数有极限\\2.在a处函数有定义\\3.在a处极限等于函数值\end{cases}
⎩
⎨
⎧1.在a处函数有极限2.在a处函数有定义3.在a处极限等于函数值
左连续:
设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。
如果
lim
x
→
a
−
f
(
x
)
=
f
(
a
)
\lim _{x\rightarrow a^{-} }f(x)=f(a)
x→a−limf(x)=f(a)
,则称函数 f(x) 在点 x=a处左连续。
右连续:
设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。
如果
lim
x
→
a
+
f
(
x
)
=
f
(
a
)
\lim _{x\rightarrow a^{+} }f(x)=f(a)
x→a+limf(x)=f(a)
,则称函数 f(x)在点 x=a 处右连续。
连续的充要条件
函数连续的充要条件:函数左右连续。
在区间的连续性:
如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。
如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续。
性质:
- 局部性质:
- 如果函数 f(x) 在点 x=a 处连续,则 f(x)在 x=a的某个邻域内有界。
- 全局性质:
- 如果函数 f(x) 在区间 [a,b]上连续,则 f(x)在该区间上有界。
- 如果函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在该区间上达到最大值和最小值。
- 如果函数 f(x)在区间 [a,b]上连续,并且 f(a)和 f(b)异号,则存在 c∈(a,b)使得 f©=0(零点定理,后边会讲)。
3.2 不连续点
定义
{
1.
在
a
处函数极限不存在
2.
在
a
处函数无定义
3.
在
a
处极限不等于函数值
\begin{cases}1.在a处函数极限不存在\\2.在a处函数无定义\\3.在a处极限不等于函数值\end{cases}
⎩
⎨
⎧1.在a处函数极限不存在2.在a处函数无定义3.在a处极限不等于函数值
可去不连续点:
如果
lim
x
→
a
f
(
x
)
\lim _{x\rightarrow a }f(x)
x→alimf(x)
存在且有限,但 f(a) 不存在或
f
(
a
)
≠
lim
x
→
a
f
(
x
)
f(a)≠\lim _{x\rightarrow a }f(x)
f(a)=x→alimf(x)
,则称 x=a 是 f(x)的可去不连续点。
跳跃不连续点:
如果
lim
x
→
a
−
f
(
x
)
和
lim
x
→
a
+
f
(
x
)
\lim _{x\rightarrow a^{-} }f(x)和\lim _{x\rightarrow a^{+} }f(x)
x→a−limf(x)和x→a+limf(x)
都存在且有极限,但
lim
x
→
a
−
f
(
x
)
≠
lim
x
→
a
+
f
(
x
)
\lim _{x\rightarrow a^{-}}f(x)≠\lim _{x\rightarrow a^{+}}f(x)
x→a−limf(x)=x→a+limf(x)
,则称 x=a 是 f(x) 的跳跃不连续点。
函数
f
(
x
)
=
{
1
x
≥
0
0
x
<
0
f(x) = \begin{cases} 1 & x \geq 0 \\ 0 & x < 0 \end{cases}
f(x)={10x≥0x<0
在 x=0 处,左极限
lim
x
→
0
−
f
(
x
)
=
0
\lim _{x\rightarrow 0^{-}}f(x)=0
x→0−limf(x)=0
,右极限
lim
x
→
0
+
f
(
x
)
=
1
\lim _{x\rightarrow 0^{+}}f(x)=1
x→0+limf(x)=1
,函数值 f(0)=1。
因此,函数在 x=0处是跳跃不连续点。
无穷不连续点:
如果
lim
x
→
a
f
(
x
)
\lim _{x\rightarrow a }f(x)
x→alimf(x)
不存在或为无穷大,则称 x=a是 f(x) 的无穷不连续点。
如:y=tanx,x在π/2处为无穷大,所以x=π/2是 f(x) 的无穷不连续点。
3.3 闭区间连续函数性质
零点定理:(后边会用)
设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f©=0。
介值定理:(后边会用)
设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min(f(a),f(b))<k<max(f(a),f(b))),存在 c∈(a,b) 使得 f©=k。
零点定理与介值定理的关系:
零点定理是介值定理的特例:
- 零点定理可以看作是介值定理在 k=0时的特例。
- 如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f©=0。