导数Day7

1.概念

速度角度:

在物理学中,速度是描述物体位置随时间变化快慢的量。假设我们有一个函数 f(t1)表示物体在时间 t1 的位置,f(t2)表示物体在时间 t2的位置,那么在t1到t2时间段内,物体移动的距离为f(t2)-f(t1),平均速度为:
v = f ( t 2 − f ( t 1 ) ) t 2 − t 1 v=\dfrac{f(t_{2}-f(t_{1}))}{t_{2}-t_{1}} v=t2t1f(t2f(t1))
物体在t1的瞬时速度接近于:
v = lim ⁡ t 2 → t 1 f ( t 2 ) − f ( t 1 ) t 2 − t 1 v=\lim _{t_{2}\rightarrow t_{1}}\dfrac{f(t_{2})-f(t_{1})}{t_{2}-t_{1}} v=t2t1limt2t1f(t2)f(t1)
也就是说当t2无限接近于t1时的速度。

切线角度

假设我们有一个函数 f(x),其图像是一条曲线。我们想要了解这条曲线在某一点 x=a 处的变化情况。

在这里插入图片描述
首先,考虑曲线上的两个点 (a,f(a)) 和 (b,f(b)),其中 b 是接近 a 的另一个点。连接这两个点的直线称为割线。割线的斜率可以表示为:
割线的斜率 = f ( b ) − f ( a ) b − a 割线的斜率=\dfrac{f(b)−f(a)}{b−a} 割线的斜率=baf(b)f(a)
接下来,我们让点 b 逐渐接近点 a,即 b→a。在这个过程中,割线的斜率会逐渐接近曲线在点 (a,f(a))处的切线的斜率。

当 b 无限接近 a 时,割线的斜率就变成了曲线在点 (a,f(a))处的切线的斜率:
f ′ ( a ) = lim ⁡ b → a f ( b ) − f ( a ) b − a f′(a)=\lim _{b\rightarrow a}\dfrac{f(b)−f(a)}{b−a} f(a)=balimbaf(b)f(a)

1.1 导数定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
f ’ ( x 0 ) 或 d y d x ∣ x = x 0 f’(x_{0})或\dfrac{dy}{dx}|_{x=x_{0}} f(x0)dxdyx=x0
即:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f′(x_{0})=\lim _{Δx\rightarrow 0}\dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} f(x0)=Δx0limΔxf(x0+Δx)f(x0)
其中:

  • Δx 是一个很小的增量,表示 x 的变化量。

  • f ( x 0 + Δ x ) f(x_{0} + Δx) f(x0+Δx)

    是 x 在 x0 点增加 Δx 后的函数值。

  • f(x0) 是 x 在 x0 点的函数值。

  • f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)f(x0)

    是函数在 x=x0 处的平均变化率。

  • lim ⁡ Δ x → 0 \lim _{Δx\rightarrow 0} Δx0lim

    表示当 Δx 趋近于 0 时的极限。

  • 平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是
    f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_{0} + Δx)−f(x_{0})}{Δx} Δxf(x0+Δx)f(x0)
    。这个比值表示函数在这段区间内的平均变化速度。

  • 瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。

1.2 单侧导数

1.2.1 左导数

函数 f(x)在点 x=a 处的左导数定义为:
f − ′ ( a ) = lim ⁡ h → 0 − f ( a + h ) − f ( a ) h f_{-}'(a)=\lim _{h\rightarrow 0^{-}}\dfrac{f(a+h)-f(a)}{h} f(a)=h0limhf(a+h)f(a)
其中 h→0−表示 h 从负方向趋近于 0。

1.2.2 右导数

函数 f(x)在点 x=a处的右导数定义为:
f + ′ ( a ) = lim ⁡ h → 0 + f ( a + h ) − f ( a ) h f_{+}'(a)=\lim _{h\rightarrow 0^{+}}\dfrac{f(a+h)-f(a)}{h} f+(a)=h0+limhf(a+h)f(a)
其中 h→0+表示 h 从正方向趋近于 0。

1.2.3 导数的存在性

函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:
f ′ ( a ) = f − ′ ( a ) = f + ′ ( a ) f'(a)=f_{−}'(a)=f_{+}'(a) f(a)=f(a)=f+(a)
例子

1. f(x)=∣x∣,计算其在 x=0 处的左导数和右导数。

解:

左导数:
f − ′ ( 0 ) = lim ⁡ h → 0 − f ( h + 0 ) − f ( 0 ) h = lim ⁡ h → 0 − − h − 0 h = − 1 f_{-}'(0)=\lim _{h\rightarrow 0^{-}}\dfrac{f(h+0)-f(0)}{h}=\lim _{h\rightarrow 0^{-}}\dfrac{-h-0}{h}=-1 f(0)=h0limhf(h+0)f(0)=h0limhh0=1
右导数:
f + ′ ( 0 ) = lim ⁡ h → 0 + f ( 0 + h ) − f ( 0 ) h = lim ⁡ h → 0 + h − 0 h = 1 f_{+}'(0)=\lim _{h\rightarrow 0^{+}}\dfrac{f(0+h)-f(0)}{h}=\lim _{h\rightarrow 0^{+}}\dfrac{h-0}{h}=1 f+(0)=h0+limhf(0+h)f(0)=h0+limhh0=1
由于
f − ′ ( 0 ) ≠ f + ′ ( 0 ) f_{-}'(0)≠f_{+}'(0) f(0)=f+(0)
,所以 f(x)=∣x∣ 在 x=0处不可导。

2.导数的几何意义

2.1 切线

由导数定义可知,f(x)在点 (a,f(a))处的斜率:
f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f′(a)=\lim _{x\rightarrow a}\dfrac{f(x)−f(a)}{x−a} f(a)=xalimxaf(x)f(a)
所以切线方程可以表示为:
y − f ( a ) = f ′ ( a ) ( x − a ) y-f(a)=f′(a)(x-a) yf(a)=f(a)(xa)
其中:

  • y 是切线上的点的纵坐标。
  • f(a) 是函数在点 x=a 处的值。
  • f′(a) 是函数在点 x=a 处的导数,即切线的斜率。
  • x 是切线上的点的横坐标。
  • a 是切点处的横坐标。

化简切线方程:
y − f ( a ) = f ′ ( a ) ( x − a ) = > y = f ′ ( a ) x − a f ′ ( a ) + f ( a ) y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a) yf(a)=f(a)(xa)=>y=f(a)xaf(a)+f(a)
将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

2.2 法线

是与切线垂直的直线。切线的斜率为f’(a),则法线的斜率为
− 1 f ′ ( a ) -\dfrac{1}{f'(a)} f(a)1
法线方程的一般形式是:
y − f ( a ) = − 1 f ′ ( a ) ( x − a ) y−f(a)=−\dfrac{1}{f′(a)}(x−a) yf(a)=f(a)1(xa)

其中:

  • y 是法线上的点的纵坐标。
  • f(a是函数在点 x=a处的值。
  • f′(a)是函数在点 x=a处的导数,即切线的斜率。
  • x 是法线上的点的横坐标。
  • a 是法线点处的横坐标。

化简法线方程:
将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。

3.可导与连续的关系

3.1 定义

连续性

一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
lim ⁡ x → a f ( x ) = f ( a ) 或者 lim ⁡ h → 0 f ( a + h ) − f ( a ) = 0 \lim _{x\rightarrow a}f(x)=f(a)或者\lim _{h\rightarrow 0}f(a+h)-f(a)=0 xalimf(x)=f(a)或者h0limf(a+h)f(a)=0
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。

可导性

一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h} f(a)=h0limhf(a+h)f(a)
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

3.2 定理

1.可导性蕴含连续性

如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。

证明:如果函数 f(x) 在点 x=a处可导,则
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h} f(a)=h0limhf(a+h)f(a)
我们要证f(x)在点 x=a 处连续,需要证明
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)
变换上述等式:
lim ⁡ x → a ( f ( x ) − f ( a ) ) = lim ⁡ x → a ( f ( x ) − f ( a ) x − a ( x − a ) ) = lim ⁡ x → a f ( x ) − f ( a ) x − a . lim ⁡ x → a ( x − a ) = f ′ ( a ) . 0 = 0 \lim _{x\rightarrow a}(f(x)-f(a))=\lim _{x\rightarrow a}(\dfrac{f(x)-f(a)}{x-a}(x-a))=\lim _{x\rightarrow a}\dfrac{f(x)-f(a)}{x-a}.\lim _{x\rightarrow a}(x-a)=f'(a).0=0 xalim(f(x)f(a))=xalim(xaf(x)f(a)(xa))=xalimxaf(x)f(a).xalim(xa)=f(a).0=0
所以
lim ⁡ x → a f ( x ) = f ( a ) \lim _{x\rightarrow a}f(x)=f(a) xalimf(x)=f(a)
2.连续性不一定蕴含可导性

反例:考虑函数 f(x)=∣x|在 x=0处是否可导。

证明:

连续性:
lim ⁡ x → 0 ∣ x ∣ = 0 = f ( 0 ) \lim _{x\rightarrow 0}|x|=0=f(0) x0limx=0=f(0)
函数是连续的

可导性:

左导数:
f − ′ ( 0 ) = lim ⁡ h → 0 − f ( h + 0 ) − f ( 0 ) h = lim ⁡ h → 0 − − h − 0 h = − 1 f_{-}'(0)=\lim _{h\rightarrow 0^{-}}\dfrac{f(h+0)-f(0)}{h}=\lim _{h\rightarrow 0^{-}}\dfrac{-h-0}{h}=-1 f(0)=h0limhf(h+0)f(0)=h0limhh0=1
右导数:
f + ′ ( 0 ) = lim ⁡ h → 0 + f ( 0 + h ) − f ( 0 ) h = lim ⁡ h → 0 + h − 0 h = 1 f_{+}'(0)=\lim _{h\rightarrow 0^{+}}\dfrac{f(0+h)-f(0)}{h}=\lim _{h\rightarrow 0^{+}}\dfrac{h-0}{h}=1 f+(0)=h0+limhf(0+h)f(0)=h0+limhh0=1
左右导数不相等,所以函数不是可导的。

4.求导公式

4.1 求导规则

  1. 常数规则
    d d x ( c ) = 0 \dfrac{d}{dx}(c)=0 dxd(c)=0

    其中 c 是常数。

  2. 幂函数规则
    d d x ( x n ) = n x n − 1 \dfrac{d}{dx}(x^{n})=nx^{n−1} dxd(xn)=nxn1

    其中 n 是任意实数。

  3. 常数倍规则
    d d x ( c ⋅ f ( x ) ) = c ⋅ f ′ ( x ) 或 ( c v ) ′ = c v ′ \dfrac{d}{dx}(c⋅f(x))=c⋅f′(x)或(cv)'=cv' dxd(cf(x))=cf(x)(cv)=cv

    其中 c 是常数。

  4. 和差规则
    d d x ( f ( x ) ± g ( x ) ) = f ′ ( x ) ± g ′ ( x ) 或 ( u ± v ) ′ = u ′ ± v ′ \dfrac{d}{dx}(f(x)±g(x))=f′(x)±g′(x)或(u±v)'=u'±v' dxd(f(x)±g(x))=f(x)±g(x)(u±v)=u±v

  5. 乘积规则
    d d x ( f ( x ) ⋅ g ( x ) ) = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) 或 ( u v ) ′ = u ′ v + u v ′ \dfrac{d}{dx}(f(x)⋅g(x))=f′(x)⋅g(x)+f(x)⋅g′(x)或(uv)'=u'v+uv' dxd(f(x)g(x))=f(x)g(x)+f(x)g(x)(uv)=uv+uv

  6. 商规则
    d d x ( f ( x ) g ( x ) ) = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) [ g ( x ) ] 2 或 ( u v ) ′ = u ′ v − u v ′ v 2 \dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{f′(x)⋅g(x)−f(x)⋅g′(x)}{[g(x)]^{2}}或(\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^{2}} dxd(g(x)f(x))=[g(x)]2f(x)g(x)f(x)g(x)(vu)=v2uvuv

    其中 g(x)≠0。

  7. 链式法则(复合函数求导):
    d d x ( f ( g ( x ) ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) 或 d y d x = d y d u . d u d x \dfrac{d}{dx}(f(g(x)))=f′(g(x))⋅g′(x)或\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx} dxd(f(g(x)))=f(g(x))g(x)dxdy=dudy.dxdu

4.2 常见函数的求导公式

  1. 指数函数
    d d x ( e x ) = e x \dfrac{d}{dx}(e^{x})=e^{x} dxd(ex)=ex

    d d x ( a x ) = a x l n ⁡ ( a ) \dfrac{d}{dx}(a^{x})=a^{x}ln⁡(a) dxd(ax)=axln(a)

    其中 a>0且 a≠1。

  2. 对数函数
    d d x ( l n ⁡ x ) = 1 x \dfrac{d}{dx}(ln⁡x)=\dfrac{1}{x} dxd(lnx)=x1

    d d x ( l o g ⁡ a ( x ) ) = 1 x l n ⁡ ( a ) \dfrac{d}{dx}(log⁡_{a}(x))=\dfrac{1}{xln⁡(a)} dxd(loga(x))=xln(a)1

    其中 a>0且 a≠1。

  3. 三角函数
    d d x ( s i n ⁡ ( x ) ) = c o s ⁡ ( x ) \dfrac{d}{dx}(sin⁡(x))=cos⁡(x) dxd(sin(x))=cos(x)

    d d x ( c o s ⁡ ( x ) ) = − s i n ⁡ ( x ) \dfrac{d}{dx}(cos⁡(x))=−sin⁡(x) dxd(cos(x))=sin(x)

    d d x ( t a n ⁡ ( x ) ) = s e c ⁡ 2 ( x ) = 1 c o s 2 ( x ) \dfrac{d}{dx}(tan⁡(x))=sec^{⁡2}(x)=\dfrac{1}{cos^{2}(x)} dxd(tan(x))=sec⁡2(x)=cos2(x)1

  4. 反三角函数
    d d x ( a r c s i n ⁡ ( x ) ) = 1 1 − x 2 \dfrac{d}{dx}(arcsin⁡(x))=\dfrac{1}{\sqrt{1-x^{2}}} dxd(arcsin(x))=1x2 1

    d d x ( a r c c o s ⁡ ( x ) ) = − 1 1 − x 2 \dfrac{d}{dx}(arccos⁡(x))=−\dfrac{1}{\sqrt{1-x^{2}}} dxd(arccos(x))=1x2 1

    d d x ( a r c t a n ⁡ ( x ) ) = 1 1 + x 2 \dfrac{d}{dx}(arctan⁡(x))=\dfrac{1}{1+x^{2}} dxd(arctan(x))=1+x21

    5.高阶导数

高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)dx2d2y
。类似地,三阶导数是对二阶导数再求导,记作
f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x)或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)dx3d3y
,以此类推。

定义

对于一个函数 f(x),其 n 阶导数定义为:
f ( n ) ( x ) = d n y d x n f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}} f(n)(x)=dxndny
其中 n是正整数。

高阶导数的符号表示

  • 一阶导数:
    f ′ ( x ) 或 d y d x f′(x)或 \dfrac{dy}{dx} f(x)dxdy

  • 二阶导数:
    f ′ ′ ( x ) 或 d 2 y d x 2 f''(x) 或 \dfrac{d^{2}y}{dx^{2}} f′′(x)dx2d2y

  • 三阶导数:
    f ′ ′ ′ ( x ) 或 d 3 y d x 3 f'''(x) 或 \dfrac{d^{3}y}{dx^{3}} f′′′(x)dx3d3y

  • n 阶导数:
    f ( n ) ( x ) 或 d n y d x n f^{(n)}(x)或\dfrac{d^{n}y}{dx^{n}} f(n)(x)dxndny

6.隐函数求导

隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
d y d x \dfrac{dy}{dx} dxdy
隐函数求导的基本步骤

  1. 对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
  2. 使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数
  3. 通过求导得到的方程,解出 dy/dx。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值