【位移控制进行弯曲的钢细长梁】用于钢筋和混凝土的非线性三维有限元求解器研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 第1部分

 2.2 第二部分

2.3 第3部分 

2.4 第4部分 

2.5 第5部分

2.6 第6部分

2.7 第7部分

2.8 第8部分

2.9 第9部分

2.10 第10部分

2.11 第11部分

2.12 第12部分

2.13 第13部分

2.14 第14部分

2.15 第15部分

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文包括一下15部分:1.使用位移控制、进行压缩的混凝土部分 2。使用弧长控制进行弯曲的混凝土梁 3.使用位移控制进行弯曲的混凝土梁(单元类型为砖) 4.使用位移控制进行弯曲的混凝土梁(单元类型为四面体)5.使用位移控制进行弯曲的混凝土梁(单元类型为楔形)
6.使用位移控制进行拉伸的混凝土部分 7.使用载荷控制进行弯曲的弹性梁 8.使用位移控制
进行弯曲的钢筋混凝土梁(假设粘结滑移钢和混凝土) 9.使用位移控制对钢筋混凝土梁进行弯曲(假设钢和混凝土之间的刚性粘合)10.使用弧长控制进行弯曲的钢梁 11.使用位移控制进行弯曲的钢梁 12.使用载荷控制进行弯曲的钢梁 13.使用位移控制承受张力的钢型材 14.使用位移控制进行弯曲的钢细长梁(单元类型为砖) 15.使用位移控制进行弯曲的钢细长梁(单元类型是具有非线性几何形状的砖[总拉格朗日])

钢细长梁的位移控制进行弯曲是一个重要的研究方向,尤其在钢筋和混凝土结构的非线性行为中。在这个问题中,研究使用三维有限元法来模拟和分析钢细长梁的弯曲行为。

三维有限元法是一种数值计算方法,用于求解具有复杂几何形状和材料非线性行为的结构问题。它将结构划分为离散的小单元,通过定义单元的材料特性和连接关系,利用数学方法求解结构的力学响应。

针对钢细长梁的位移控制进行弯曲的研究,需要考虑钢筋和混凝土材料的非线性行为,包括弹性变形、塑性变形、屈曲等。同时,还需要考虑结构的几何非线性效应,如大变形、大位移等。

通过在三维有限元求解器中定义钢筋和混凝土的力学性质、模拟加载和位移控制的过程,可以得到钢细长梁在弯曲加载下的力学响应,包括应力分布、位移变形、以及可能的破坏模式。

这样的研究可以用于优化钢筋和混凝土结构的设计,评估其在弯曲加载下的性能和安全性,并为工程实践提供参考和指导。然而,对于复杂的非线性问题,如混凝土的开裂和破坏行为,可能需要引入更高级的数值模型和方法来获得准确的结果。

总的来说,位移控制进行弯曲的钢细长梁的研究是一个涉及材料非线性和几何非线性效应的复杂问题,需要使用三维有限元求解器来模拟和分析结构的力学响应。这样的研究对于提高钢筋和混凝土结构的设计和性能具有重要的意义。

📚2 运行结果

2.1 第1部分

 

 2.2 第二部分

 

 

2.3 第3部分 

 

2.4 第4部分 

 

 

 

2.5 第5部分

 

2.6 第6部分

 

 

其余部分就不一一展示,全部见文章末尾。

2.7 第7部分

2.8 第8部分

2.9 第9部分

2.10 第10部分

2.11 第11部分

2.12 第12部分

2.13 第13部分

2.14 第14部分

2.15 第15部分

部分代码:

Material{1,1}.E=200000;                                        %Modulus of elasticity of steel
Material{1,1}.v=0.3;                                           %Poisson ratio of steel
Material{1,1}.f_y=400;                                         %Yield Stress of steel
Material{1,1}.Type='Elastic Plastic Model';

Analysis_Options.Iteration_Method='Newton-Raphson';            %Iteration Method
Analysis_Options.Max_Iterations=50;                            %Solver max number of iterations
Analysis_Options.Force_Tolerance=10;                           %Force Tolerance 
Analysis_Options.Disp_Tolerance=0;                             %Displacement Tolerance
Analysis_Options.Diverge_Tolerance=20;                         %Divergence Tolerance
Analysis_Options.Line_Search_Used=1;                           %Is Line Search Used
Analysis_Options.Line_Search_In_Iter_0=0;                      %Is Line Search Used in Predictor Iteration (Never use with Arc Length Control)
Analysis_Options.Tolerance_Relative=0;                         %Is Tolerance Relative or Absolute

Analysis_Options.Line_Search_Options.x_min=0.1;                %Line Search Minimium eta               
Analysis_Options.Line_Search_Options.x_max=10;                 %Line Search Maximium eta
Analysis_Options.Line_Search_Options.beta=0.8;                 %Line Search Tolerance
Analysis_Options.Line_Search_Options.Max_Iter=10;              %Line Seach Max Number of Iterations  

Max_Step_Divisions=3;                                          %Max Number of step divisions

Show_Deformed=1;                                               %Show deformed shape
Mag_Factor=1;                                                  %Magnification factor
Result_type=13;                                                %Result type Null,ez,ey,ez,2exy,2eyz,2ezx,sz,sy,sz,sxy,syz,szx,Inelastic Parameters (0-17)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]魏春涛.房建工程中的钢筋混凝土结构施工工艺研究与应用[J].工程机械与维修,2023(03):259-261.

[2]缪钱燕.粘结滑移对钢筋混凝土结构力学性能影响研究现状及进展[J].江西建材,2023(04):5-6.

[3]曾繁,冯晓伟,黄超等.钢筋混凝土结构改进型分离式数值模型[J].爆炸与冲击,2022,42(06):135-146.

[4]赵卫坤. 装配式钢筋混凝土构件破坏行为的数值仿真[D].苏州科技大学,2022.DOI:10.27748/d.cnki.gszkj.2022.000463.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值