线性与非线性控制

控制理论领域可以分为两个分支:

线性系统控制

对于 MIMO 系统,可以使用开环系统的状态空间表示并计算在所需位置分配极点的反馈矩阵,以数学方式执行极点放置。在复杂的系统中,这可能需要计算机辅助计算能力,并且不能始终确保稳健性。此外,通常不会测量所有系统状态,因此必须在极点布置设计中包括并纳入观察者。

非线性系统控制

主条目:非线性控制

机器人航空航天工业等行业的过程通常具有很强的非线性动力学。在控制理论中,有时可以对此类系统进行线性化并应用线性技术,但在许多情况下,可能有必要从头开始设计允许控制非线性系统的理论。这些,例如反馈线性化反推滑模控制、轨迹线性化控制通常利用基于李雅普诺夫理论的结果。微分几何已被广泛用作将众所周知的线性控制概念推广到非线性情况的工具,并展示了使其成为更具挑战性的问题的微妙之处。控制理论也被用来破译指导认知状态的神经机制。[19]

分散式系统控制

主条目:分布式控制系统

当系统由多个控制器控制时,问题是分散控制之一。去中心化在很多方面都有帮助,例如,它有助于控制系统在更大的地理区域内运行。分散控制系统中的代理可以使用通信渠道进行交互并协调他们的行动。

确定性和随机系统控制

主条目:随机控制

随机控制问题是状态变量的演化受到来自系统外部的随机冲击的问题。确定性控制问题不受外部随机冲击的影响。

主要控制技术列表

  • 自适应控制使用过程参数的在线识别或控制器增益的修改,从而获得强大的鲁棒性。自适应控制在 1950 年代首次应用于航空航天工业,并在该领域取得了特别成功。
  • 分层控制系统是一种控制系统,其中一组设备和管理软件以分层 的形式排列。当树中的链接由计算机网络实现时,那么这种分层控制系统也是一种网络化控制系统
  • 智能控制使用各种人工智能计算方法,如人工神经网络贝叶斯概率模糊逻辑[20] 机器学习进化计算遗传算法或这些方法的组合,如神经模糊算法,来控制动态系统
  • 最佳控制是一种特殊的控制技术,其中控制信号优化某个“成本指数”:例如,在卫星的情况下,需要喷射推力将其带到消耗最少燃料量的所需轨道。两种优化控制设计方法已被广泛应用于工业应用中,因为已经证明它们可以保证闭环稳定性。这些是模型预测控制(MPC) 和线性二次高斯控制(LQG)。第一个可以更明确地考虑系统中信号的约束,这是许多工业过程中的一个重要特征。然而,MPC 中的“最优控制”结构只是实现这种结果的一种手段,它并没有优化闭环控制系统的真实性能指标。与 PID 控制器一起,MPC 系统是过程控制中使用最广泛的控制技术。
  • 鲁棒控制明确地处理其控制器设计方法中的不确定性。使用鲁棒控制方法设计的控制器往往能够处理真实系统和用于设计的标称模型之间的微小差异。[21] Bode和其他人的早期方法相当稳健。有时发现 1960 年代和 1970 年代发明的状态空间方法缺乏稳健性。现代鲁棒控制技术的例子包括由 Duncan McFarlane 和Keith Glover开发的H-infinity loop-shaping,由Vadim Utkin开发的滑模控制(SMC)和安全协议,用于控制智能电网应用中的大量异类电力负载。[22] 稳健的方法旨在在存在小的建模错误的情况下实现稳健的性能和/或稳定性。
  • 随机控制处理模型中存在不确定性的控制设计。在典型的随机控制问题中,假设模型和控制器中存在随机噪声和扰动,控制设计必须考虑这些随机偏差。
  • 自组织临界控制可以定义为试图干预自组织系统耗散能量的过程。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值