💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
具备全年每小时电力平衡的发输电扩展规划可再生能源正在引领能源转型,电力系统的灵活性已成为全球的优先事项。将短期评估纳入长期规划中对于捕捉发电的运行特性和解决灵活性问题至关重要。本文提出了一个新颖的发输电扩展规划模型,包括经济调度。在发电扩展规划中,优化了容量扩展。在经济调度问题中,优化了发电厂的运行、水电发电和线路输电功率流。该模型是一个混合整数线性规划问题,在MATLAB中使用Gurobi工具箱进行求解。提出了一个模型来优化水电系统和径流河流的水库。以2050年巴西需求为例进行了案例研究。提出了一个具有温室气体排放成本和无赤字的情景。研究表明,目前的负荷损失罚款成本不足以避免赤字。可以通过使用总储存能力的13%进行5.5%的消减,在不需要大型水库或赤字的情况下满足2050年的需求,但需要尖峰发电厂。
我们的研究专注于面向100%清洁能源的发输电系统扩展规划。随着对可持续能源的需求增加以及对化石燃料的排放限制,实现100%清洁能源的发输电系统已成为一项紧迫的任务。
在我们的研究中,我们考虑到了清洁能源的特点和不确定性。我们的目标是设计出一种系统性的规划方法,可以确定如何扩展发电和输电网络,以最大程度地利用各种清洁能源资源,并保证电力系统的可靠性和可持续性。
我们的研究方法基于优化技术和复杂系统分析。我们首先收集各种清洁能源资源的数据,包括太阳能、风能、水能等,并进行可行性评估。基于这些数据,我们使用数学优化模型来确定最佳的发电和输电设施的部署方案,以满足电力需求并最大限度地减少碳排放。
我们的研究还考虑到了电力系统的可靠性和稳定性。我们使用复杂系统分析方法来评估各种发输电方案的可行性,包括网络容量、电压稳定性和电力质量等方面。通过这些分析,我们可以选择最佳的方案来保证电力系统的可靠性和稳定性。
此外,我们的研究还兼顾经济效益的考虑。我们会进行成本效益分析,考虑建设和维护清洁能源发输电设施的成本,并与传统能源系统进行比较。通过这种分析,我们可以评估清洁能源发输电系统的经济性,并制定出合理的发展规划。
综上所述,我们的研究着眼于面向100%清洁能源的发输电系统扩展规划。通过综合考虑可行性、可靠性和经济性等多个因素,我们旨在为实现可持续的清洁能源发输电系统提供科学、有效的规划方法。
面向100%清洁能源的发输电系统扩展规划研究
一、100%清洁能源系统的定义与核心组成
-
定义与分类
100%可再生能源电力系统(100% REPS)是指完全依赖水能、风能、太阳能、生物质能等非化石燃料的可再生能源发电系统,并通过电网输配至终端用户。与之相关的概念包括:- 碳中和电力系统:通过核电、CCS技术改造的化石能源机组实现净零碳排放。
- 纯清洁能源电力系统:各国定义存在差异,例如中国将天然气纳入清洁能源范畴,而美国则仅包含可再生能源和核能。
-
技术构成
- 发电侧:以风、光为主(占主体能源地位),辅以水电、生物质能、地热能等调节性能源。
- 输电侧:需结合特高压直流、柔性直流等技术,解决可再生能源跨区域输送问题。
- 储能系统:氢储能(长周期调节)、电池储能(短时调频)及抽水蓄能等多技术协同。
二、当前主流清洁能源发电技术及效率提升路径
-
光伏技术
- 效率与成本:2025年光伏发电成本已降至0.51-0.80元/千瓦时(非洲至欧洲区间),效率提升依赖钙钛矿电池、聚光太阳能热发电等技术。
- 预测系统优化:光功率预测系统升级(如尼那电厂案例)可提升电网稳定性。
-
风电技术
- 海上风电:单机容量达15-20MW,通过叶片气动优化和智能控制系统提升发电效率。
- 陆上风电:选址优化结合AI预测模型降低弃风率。
-
水电与多能互补
水电作为灵活性调节电源,通过水风光互补运行提升可再生能源整体消纳能力。例如,中国西南地区“水风光一体化基地”已实现季节性互补。
三、高比例可再生能源电网的输电技术挑战与创新
-
技术瓶颈
- 波动性影响:风光发电的间歇性导致电网频率和电压支撑能力下降,需依赖构网技术(Grid-forming)自主构建电压/频率基准。
- 输电损耗:特高压直流(±800kV及以上)可降低长距离传输损耗至3%以下,但需解决电缆材料耐压限制。
-
创新解决方案
- 柔性直流(VSC-HVDC) :支持多端组网、黑启动能力,适用于海上风电集群并网。
- 管道输电技术:探索800kV以上直流输电,突破传统电缆电压上限。
- 智能电网:结合数字孪生技术实现电网动态仿真与实时调控。
四、系统扩展规划的关键挑战与应对策略
-
储能技术短板
- 短时储能:锂离子电池能量密度提升至300Wh/kg,循环寿命超10,000次,但安全性仍需改进。
- 长时储能:绿氢储能成本需降至2美元/kg以下,并构建跨季节储氢管网。
-
经济性模型
- 成本优化:采用NSGA-II多目标算法平衡电网扩展成本与灵活性,弃风弃光率可降低至5%以下。
- LCOE分析:非洲光伏LCOE为0.51-0.643元/kWh,低于欧洲(0.63-0.80元/kWh),但需考虑跨洲输电成本。
-
政策与标准
- 国际案例:欧盟通过“可再生能源指令”设定2030年45%可再生能源占比目标;中国《新型电力系统建设方案》要求新增输电通道新能源占比超50%。
- 标准化体系:完善光/风设备检测认证标准,推动氢储能安全规范制定。
五、全球典型案例与经验启示
-
沙特红海新城
-
技术方案:华为光储微网系统实现100%清洁供电,白天光伏发电+储能充电,夜间储能供电,分钟级黑启动能力117。
华为为中东土豪打造全球首个100%清洁能源供电城市—沙特红海新城!由华为全球最大光储微网电站供电,!华为怎么什么都会啊!
-
经济模式:微网独立运营,降低对传统电网依赖,投资回收期缩短至8-10年117。
-
-
中国水风光基地
- 规划逻辑:西南地区依托水电调节能力,配套建设风电10GW、光伏15GW,形成多能互补架构。
- 输电通道:应用±1100kV特高压直流技术,输送距离超3000公里,损耗低于5%。
-
欧洲城市实践
- 温哥华:2050年100%可再生能源目标,通过建筑能效提升+分布式光伏+地热网络实现。
- 伊斯坦布尔:填埋气发电系统供电20万户,年减排CO₂ 120万吨。
六、未来研究方向与建议
-
技术融合
- 氢-电耦合:探索氢储能与燃料电池在调峰中的协同效应。
- AI预测优化:结合气象大数据提升风光出力预测精度至95%以上。
-
政策协同
- 碳市场联动:将绿电交易纳入全国碳市场,通过价格信号激励投资。
- 跨区域机制:建立亚太清洁能源输送联盟,推动跨国输电通道共建。
-
标准统一
- 国际互认:推动IEC/ISO制定全球统一的清洁能源设备标准,降低贸易壁垒。
结论
实现100%清洁能源发输电系统的扩展规划需综合技术突破、经济模型优化及政策创新。未来十年,以氢储能为代表的长时储能、柔性直流输电及多能互补系统将成为关键突破口,而全球合作与标准化体系建设将加速这一进程。
📚2 运行结果
部分代码:
x = [];
x = result.x;
x = x/m;
t2 = nt*sub;
P = x(1:t2); % non-dispatchable renewable energy installed capacity
t1 = t2 + 1;
t2 = t2 + nTer*sub;
PTE = x(t1:t2); % non-renewables installed capacity
t1 = t2 + 1;
t2 = t2 + nUHEf;
x(t1:t2) = x(t1:t2)*m;
P_UHEf = x(t1:t2); % ReS installed capacity
t1 = t2 + 1;
t2 = t2 + nUHEfio;
x(t1:t2) = x(t1:t2)*m;
P_UHEfio = x(t1:t2); % RoR installed capacity
t1 = t2 + 1;
t2 = t2 + (sub*(sub-1)/2);
Pot_linha = x(t1:t2);
fluxo_linha = zeros(horas,sub^2); % transmission lines installed capacity
for t = 1:horas
t1 = t2 + 1;
t2 = t2 + sub^2;
fluxo_linha(t,:) = x(t1:t2);
end
t1 = t2 + 1;
t2=t1;
Cap_def = x(t1); % Deficit capacity
deficit = sparse(horas,sub); % hourly deficit
for t = 1:sub
t1 = t2 + 1;
t2 = t2 + horas;
deficit(:,t) = x(t1:t2);
end
for t = 1:sub
t1 = t2 + 1;
t2 = t2 + horas;
curt(:,t) = x(t1:t2); % curtailment
end
for t = 1:sub
t1 = t2 + 1;
t2 = t2 + horas;
UHEf(:,t) = x(t1:t2); % ReS Power generation
end
for t = 1:sub
t1 = t2 + 1;
t2 = t2 + horas;
UHEfio(:,t) = x(t1:t2); % RoR Power generation
end
GT = [];
for t0 = 1:nTer
for t = 1:sub
t1 = t2 + 1;
t2 = t2 + horas;
GT.(termicas(t0))(:,t) = x(t1:t2); % Non-renewables Power generation
end
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]胡博,伏坚,谢开贵等. 一种应对信息-物理协同攻击的发输电系统规划方法[P]. 重庆市:CN112016085A,2020-12-01.
[2]洪绍云. 发输电系统扩展优化规划研究[D].上海交通大学,2017.