【ACO三维路径规划】蚁群算法无人机避障三维航迹规划【含Matlab源码 3335期】

本文介绍了使用Matlab实现的基于蚁群算法的无人机三维航迹规划,构建了考虑基本约束和复杂环境因素的数学模型,展示了如何通过信息素模拟蚂蚁觅食行为,以生成无碰撞的航迹。同时提供了部分源代码和Matlab版本信息。
摘要由CSDN通过智能技术生成

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、蚁群算法无人机避障三维航迹规划简介

1 无人机航迹规划问题的数学模型
建立三维航迹规划问题的数学模型时, 不但考虑无人机基本约束, 还考虑复杂的飞行环境, 包括山体地形和雷暴威胁区。

1.1 无人机基本约束
规划的无人机三维航迹, 通常需要满足一些基本约束, 包括最大转弯角、最大爬升角或下滑角、最小航迹段长度、最低和最高飞行高度, 以及最大航迹长度等约束。其中, 最大转弯角约束, 是指无人机只能在水平面内小于或等于指定的最大转弯角内转弯;最大爬升角或下滑角约束, 是指无人机只能在垂直平面内小于或等于指定的最大爬升角或下滑角内爬升或下滑;最小航迹段长度约束, 要求无人机改变飞行姿态之前, 按目前的航迹方向飞行的最短航程;最低和最高飞行高度约束, 要求无人机在指定的飞行高度区间飞行;最大航迹长度约束, 是指无人机的航迹长度小于或等于指定的阈值。

记q (x, y, z, θ, ψ) 为无人机的飞行位置与姿态, 其中, (x, y, z) 为无人机的位置, θ为无人机的水平转弯角, ψ为无人机的竖直爬升角或下滑角, 进而建立上述基本约束的数学表达式。
在这里插入图片描述
1.2 飞行环境障碍物和威胁区建模
在飞行环境中, 高耸的山体近似采用圆锥体等效表示, 用以e为底的自然指数图形生成, 那么, 山体地形可以通过多个位置不同的圆锥体叠加而成。若将参考海拔基准高度设置为xOy平面, 记 (x, y, z) 为山体地形中的点, 那么
在这里插入图片描述
式中:N为山体个数;xk0和yk0为第k座山体中心对称轴的横坐标和纵坐标;hk为第k座山体的最大高度;xki和yki为第k座山体的横向斜度和纵向斜度。

在飞行环境中, 山体附近通常存在雷暴等极端气象, 本文视为飞行威胁区, 并通过球体近似等效表示, 且记第k座山体附近飞行威胁区的球心坐标为 (xks0, yks0, zks0) , 半径为rk。

1.3 目标函数及航迹表示
在本文中, 执行任务的某型无人机, 其航迹规划的目标函数是生成一条由起始点到目标点的无碰撞可行航迹。采用q (x, y, z, θ, ψ) 表示无人机在飞行空域中某特定位置的特定姿态, 那么 (x, y, z) 则表示无人机所在航迹点, θ表示无人机的水平转弯角, ψ表示无人机的竖直爬升角或下滑角。采用r (q) 表示由起始点qinitial到目标点qgoal的无碰撞可行航迹, 那么航迹规划的过程可以写成如下形式:
在这里插入图片描述

2 蚁群算法
2.1 简介
蚁群算法(Ant Colony Optimization,ACO)由Dorigo 等人于1991年在第一届欧洲人工生命会议(European Conference on Artificial Intelligence,ECAL)上提出,是模拟自然界真实蚂蚁觅食过程的一种随机搜索算法。蚁群算法与遗传算法(GeneticAlgorithm,GA)、粒子群优化算法(Particle Swarm Optimization,PSO)、免疫算法(Immune Algorithm,IA)等同属于仿生优化算法,具有鲁棒性强、全局搜索、并行分布式计算、易与其他方法结合等优点,在典型组合优化问题如旅行商问题(Traveling SalesmanProblem,TSP)、车辆路径问题(Vehicle Routing Problem,VRP),车间作业调度问题(Job-shop Scheduling Problem,JSP)和动态组合规划问题如通信领域的路由问题中均得到了成功的应用。

2.2 基本思想
在自然界中,蚂蚁群体在寻找食物的过程中,无论是蚂蚁与蚂蚁之间的协作还是蚂蚁与环境之间的交互均依赖于一种被称为信息素(Pheromone)的物质实现蚁群的间接通信,从而通过合作发现从蚁穴到食物源的最短路径。

蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度,并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径上行进。

2.3 基本流程
蚂蚁系统(Ant System,AS)是最基本的ACO算法,是以TSP作为应用实例提出的。
AS对于TSP的求解流程大致可分为两步:路径构建和信息素更新。
(1)路径构建
伪随机比例选择规则(random proportional)。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。a和b是两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权重关系。当a=0时,算法演变成传统的随机贪心算法,最邻近城市被选中的概率最大。当b=0时,蚂蚁完全只根据信息素浓度确定路径,算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大的差异,算法的性能比较糟糕。
在这里插入图片描述

(2)信息素更新
1 在算法初始化时,问题空间中所有的边上的信息素都被初始化为。
2 算法迭代每一轮,问题空间中的所有路径上的信息素都会发生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的无限积累,使得算法可以快速丢弃之前构建过的较差的路径。
3 蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂蚁爬过的次数越多、它所获得的信息素也越多。
4 迭代(2),直至算法终止。
在这里插入图片描述

⛄二、部分源代码

%% 三维地图-无人机寻路
% 3D map - aircraft pathfinding
%% 这是使用原始算法的直接求解结果,添加专用于本问题的更新方式可以进一步提高精度
% This is the direct result of using the original algorithm,
% adding some specific update methods to this problem can further improve the accuracy
clc;
clear;
close all;
warning off

%% 载入数据
data.S=[1,950,12]; %起点位置
data.E=[950,1,1]; %终点点位置
data.Obstacle=xlsread(‘data.xls’);
data.numObstacles=length(data.Obstacle(:,1));
data.mapSize=[1000,1000,20]; %10m 地图尺寸
data.unit=[50,50,1]; %地图精度
data.S0=ceil(data.S./data.unit);
data.E0=ceil(data.E./data.unit);
data.mapSize0=data.mapSize./data.unit;
data.map=zeros(data.mapSize0);
figure
plot3(data.S(:,1),data.S(:,2),data.S(:,3),‘o’,‘LineWidth’,1,…
‘MarkerEdgeColor’,‘g’,…
‘MarkerFaceColor’,‘g’,…
‘MarkerSize’,8)
hold on
plot3(data.E(:,1),data.E(:,2),data.E(:,3),‘h’,‘LineWidth’,1,…
‘MarkerEdgeColor’,‘g’,…
‘MarkerFaceColor’,‘g’,…
‘MarkerSize’,8)
for i=1:data.numObstacles
x=1+data.Obstacle(i,1);
y=1+data.Obstacle(i,2);
z=1+data.Obstacle(i,3);
long=data.Obstacle(i,4);
wide=data.Obstacle(i,5);
pretty=data.Obstacle(i,6);
[V,F] = DrawCuboid(long, wide, pretty, x,y,z);
x0=ceil(x/data.unit(1));
y0=ceil(y/data.unit(2));
z0=ceil(z/data.unit(3));
long0=ceil(long/data.unit(1));
wide0=ceil(wide/data.unit(2));
pretty0=ceil(pretty/data.unit(3));
data.map(x0:x0+long0,y0:y0+wide0,z0:z0+pretty0)=1;
end
legend(‘起点’,‘终点’)
title(‘三维地形地图’)
grid on
axis equal
%%
% index=find(data.map==1);
% [p1,p2,p3] = ind2sub(size(data.map), index);
% figure
% plot3(data.S0(:,1),data.S0(:,2),data.S0(:,3),‘o’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘g’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,8)
% hold on
% plot3(data.E0(:,1),data.E0(:,2),data.E0(:,3),‘h’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘g’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,8)
% plot3(p1,p2,p3,‘.’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘k’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,10)
% legend(‘起点’,‘终点’)
% title(‘三维地形地图’)
% grid on
% axis equal
% xlabel(‘x(km)’)
% ylabel(‘y(km)’)
% zlabel(‘z(km)’)
%% 生成可移动方向
temp=[1,0,-1];
direction=[];
for i=1:3
for j=1:3
for k=1:3
direction=[direction;temp(i),temp(j),temp(k)];
end
end
end
position=find(direction(:,1)==0 & direction(:,2)==0 & direction(:,3)==0);
direction(position,:)=[];
data.direction=direction;

%% 算法参数设置 Parameters
% 基本参数
numAgent=20; %种群个体数 size of population,可自行修改
Max_iter=20; %最大迭代次数 maximum number of interation,可自行修改
lb=0;%下限,可自行修改
ub=1;%上限,可自行修改
dim=prod(data.mapSize0); % 优化变量个数
fobj=@(x) aimFcn(x,data);%目标函数,用以优化

%% 使用优化算法求解

Optimal_results{2,index}=recording;%迭代曲线
Optimal_results{3,index}=bestY;%最佳函数值
Optimal_results{4,index}=bestX; %最佳变量值
Optimal_results{5,index}=result; %优化结果
Optimal_results{6,index}=toc; %运行时间
index = index +1;

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]田疆,李二超.用于无人机三维航迹规划改进连接型快速扩展随机树算法[J].航空工程进展. 2018,9(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值