💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、基于改进萤火虫算法的二维Otsu图像分割法简介
图像分割是数字图像处理技术中的一种重要方法,它简化了图像并且改变图像的表现形式,从而使图像更容易被理解和分析.图像分割的精确度对后续任务的处理会起到直接的影响,因此对其进行研究具有重要的理论价值和实际意义[1,2].常用的图像分割方法有:基于阈值的分割方法[3]、基于区域的分割方法[4]、基于边缘的分割方法[5]以及基于特定理论的分割方法等.其中,基于阈值的分割方法简单、有效、稳定,是实际应用过程中常用的一种图像分割技术.
为了更好地解决二维Otsu算法和萤火虫算法在图像分割优化中存在的复杂度高、实时性差等问题,本文提出了一种基于萤火虫算法改进的二维Otsu图像阈值分割方法.基本思想是将求解二维Otsu的目标函数问题转化为用萤火虫算法求解最优解问题,得出图像的最佳分割阈值,然后分割图像.实验结果表明,本文提出的算法分割效果理想、程序运行时间短.
1 二维犗狋狊狌阈值分割方法
设有一幅灰度级为L的图像f(x,y),邻域平滑图像g(x,y)的灰度级也为L,g(x,y)中像素的灰度值为3×3邻域内的灰度均值.对于图像中的任意一个像素就可以由像素灰度值i和邻域平均灰度值j构成的二维单元来表示.假设,M为图像的总像素个数,fij为像素的灰度值为i而且邻域的平均灰度值为j的像素点的个数,那么二维单元(i,j)出现的概率为
任意给定一个阈值向量(s,t),将二维直方图分割成如图1 中所示的A,B,C,D四个区域.其中,区域B和C表示图像中的目标类和背景类,区域A和D则对应与图像中的边缘点和噪声.分别用C1和C0来表示二维直方图中的目标类和背景类,其出现的概率分别表示为
图1 二维直方图
目标类C1和背景类C0对应的均值矢量μ1和μ0表示为
综合的灰度均值矢量μt可表示为
图像中边缘点或噪声的概率在多数情况下可以忽略.因此:
类间离散度矩阵表示为
背景类和目标类的距离测度函数可以用离散度矩阵的迹来表示:
当距离测度函数rtr(S)取得最大值时的阈值向量(s,t)即为最佳阈值.
在图像分割过程中,阈值的选取是最关键的环节,对于传统的二维Otsu阈值分割方法来说,在实时处理过程中效果不理想,因此本文引入了萤火虫算法来改进图像分割阈值的寻优过程.
⛄二、部分源代码
image_1=imread(‘ant.jpg’); %读入图片
figure,imshow(image_1);
image_1=rgb2gray(image_1);%灰度化
[m,n]=size(image_1);%计算图片的像素点个数,行列,n是列数,Gray
num=zeros(1,256);%存放各灰度级出现的次数
p=zeros(1,256);%存放各灰度级的比率
image_1=double(image_1);%双精度化
for i=1:m
for j=1:n
num(image_1(i,j)+1)=num(image_1(i,j)+1)+1;%统计各灰度级的像素点个数
end
end
for i=1:256
p(i)=num(i)/(m*n);%计算各灰度级出现的比率
end
for i=2:256
if p(i)~=0
st=i+1;%实现寻找出现比率不为0的最小灰度值
break
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]周晨航,田力威,赵宏伟.基于改进萤火虫算法的二维Otsu图像分割法[J].沈阳大学学报(自然科学版). 2016,28(01)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合