一文带你了解8 种 LLM 推理部署方案【建议收藏】

img

本文主要概述了一些主流的机器学习模型部署和推理服务,并总结了它们的关键特性。以下是一些值得重点考虑的要点:
1. Triton Inference Server:作为一个功能强大的平台,Triton Inference Server 可用于在生产环境中对机器学习模型进行部署和扩展。不过,设置 Triton Inference Server 的过程可能较为复杂。

2. 文本生成推理:要求原生支持 HuggingFace,并且不计划为核心模型使用多个适配器。

3. vLLM:需要以最大速度批量传递提示。

4. DeepSpeed-MII:用户具有使用 DeepSpeed 库的经验,期望继续借助该库来部署大型语言模型。

5. OpenLLM:希望将适配器连接到核心模型,并且利用 HuggingFace Agents,尤其是在不完全依赖 PyTorch 的情况下。

6. MLC LLM:适用于在客户端(如 Android 或 iPhone 等平台)上本地部署大型语言模型的场景。

7. Ray Serve:具备稳定的管道和灵活的部署方式,最适合应用于较为成熟的项目中。

8. CTranslate2:当速度是关键因素,且计划在 CPU 上运行推理任务时,CTranslate2 是一个不错的选择。
img

1、Triton 推理服务

Triton 是一个强大的平台,用于在生产环境中部署和扩展机器学习模型。设置 Triton 推理服务可能是一个复杂的过程。

Triton 支持从多个深度学习和机器学习框架部署任何 AI 模型,包括 TensorRT、TensorFlow、PyTorch、ONNX、OpenVINO、Python、RAPIDS FIL 等。Triton 推理服务支持在 NVIDIA GPU、x86 和 ARM CPU 或 AWS Inferentia 上进行云、数据中心、边缘和嵌入式设备的推理。Triton的关键特性:

  • 支持各种深度学习框架
  • 同时执行
  • 动态调度和批处理
  • 后端可扩展性
  • 模型集成
  • 各种指标

2、TGI 文本生成推理

文本生成推理(简称 TGI)是一个由 HuggingFace 创建的 Rust、Python、gRPC 模型服务器,可用于托管特定的大型语言模型。文本生成推理适合部署基于 NLP 的大型语言模型,如 Falcon、LLaMA、T5 等。文本生成推理的关键特性:

  • 张量并行化
  • 优化的Transformers代码
  • 量化
  • 加速权重加载
  • Logits扭曲
  • 自定义提示生成
  • 微调支持

3、 vLLM:通用大型语言模型

vLLM 是一个高性能库,旨在用于大型语言模型的推理和服务。它以其出色的服务吞吐量、使用分页注意力进行高效内存管理,以及灵活地服务各种 Hugging Face 模型而闻名。vLLM 的关键特性:

  • 高吞吐量
  • 分页注意力(Paged Attention)
  • 连续批处理
  • 优化的 CUDA 内核
  • 解码算法
  • 张量并行
  • 流式输出

4、 DeepSpeed MII

DeepSpeed Model 实现用于推理(MII)旨在使强大模型的低延迟、低成本推理不仅可行,而且也易于访问。

DeepSpeed MII 的关键特性:

  • 用于 Transformers 的 DeepFusion
  • 多 GPU 推理与张量切片
  • 通过 ZeroQuant 进行 INT8 推理
  • 用于资源受限系统的 ZeRO 推理
  • 编译器优化

5、OpenLLM

使用 OpenLLM,您可以对任何开源大型语言模型进行推理,将它们部署在云或本地,并构建强大的 AI 应用程序。OpenLLM 的关键特性:

  • 最先进的大型语言模型
  • 灵活的 API
  • 自由构建
  • 简化部署
  • 自带大型语言模型
  • 量化
  • 流式传输
  • 连续批处理

6、 MLC LLM

大型语言模型的机器学习编译(MLC LLM)是一种高性能的通用部署解决方案,允许在各种硬件后端(包括 CPU 和 GPU)以及本机应用程序上部署任何大型语言模型。MLC LLM的关键特性:

  • 通用部署
  • 平台本地运行时
  • 内存优化

7、 Ray Serve

Ray Serve 是一个可扩展的模型服务库,用于构建在线推理 API。Serve 与框架无关,因此您可以使用单一工具包来服务从深度学习模型到传统 ML 模型的所有内容。Ray Serve的关键特性:

  • 批量推理
  • 多模型训练
  • 跨多个副本自动扩展
  • 监控仪表板和 Prometheus 指标

8、 CTranslate2

CTranslate2 是一个 C++ 和 Python库,用于高效地对 Transformer 模型进行推理。CTranslate2 的关键特性:

  • 在 CPU 和 GPU 上快速高效地执行
  • 动态内存使用
  • 支持多个 CPU 架构

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### LLM与知识图谱结合的应用与实现 #### 背景介绍 大型语言模型LLM)近年来取得了显著进展,但在实际应用场景中仍面临一些挑战,例如缺乏实时更新的知识、可解释性不足等问题。而知识图谱作为一种结构化知识表示形式,可以有效补充这些短板。 #### 方法概述 目前,将知识图谱与LLM相结合的主要方式包括三种: 1. **预训练阶段的知识注入**:通过在LLM的预训练过程中融入知识图谱的信息,使得模型能够在初始阶段就具备更强的知识基础[^1]。这种方法的核心在于设计特定的任务来引导模型学习知识图谱中的关系和实体信息。 2. **推理过程中的动态知识调用**:当LLM生成文本时,可以通过外部知识图谱查询最新的事实或领域专业知识,从而提升生成内容的准确性。这种方式特别适用于需要高精度场景下的应用。 3. **增强模型可解释性**:借助知识图谱的帮助,研究者们试图揭示为什么某个预测会被做出以及它是如何基于已知的事实得出结论的。这种透明度对于医疗诊断或者法律咨询等领域尤为重要。 #### 技术细节 为了进一步探讨两者之间的协作机制,“知识增强型语言模型”(Knowledge-Enhanced Language Model, KELM)被提出作为解决方案之一[KELM][^2]。该方案强调在整个生命周期——从参数初始化直到最终部署期间持续不断地吸收来自KG的新鲜养分;具体而言,在架构层面增加了专门用于处理节点特征向量映射的功能模块,并调整注意力权重计算逻辑以便优先考虑那些具有较高置信水平的关系链接。 另外值得注意的是,《知识图谱大模型系列之 08 如何在企业级实现知识图谱和大型语言模型 (LLM)》一文中提到的实际操作指南也提供了宝贵的参考资料[^3]。它不仅涵盖了理论框架构建思路还给出了具体的工程实践指导比如采用Streamlit这样的工具快速搭建原型系统验证想法可行性等等。 以下是简单的伪代码展示如何可能在一个项目里集成这两种技术: ```python def integrate_kg_with_llm(knowledge_graph, llm_model): """ Integrate Knowledge Graph with Large Language Model. Args: knowledge_graph (dict): A dictionary representing the structure of KG. llm_model (object): Pre-trained large language model instance. Returns: object: Enhanced version of original LLM incorporating KG info. """ enhanced_model = None # Step to inject KG into pre-training phase or adjust inference logic accordingly... try: pass except Exception as e: print(f"Error occurred during integration process:{e}") finally: return enhanced_model ``` 以上仅为示意性质并不代表真实可用算法,请根据实际情况修改完善后再投入使用! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值