【图像分割】扩散张量成像(DTI)脑白质纤维束成像【含Matlab源码 2174期】

本文介绍了使用Matlab进行扩散张量成像(DTI)分析,探讨了DTI在脑白质纤维束成像中的应用,特别是与脑老化的关系,包括FA值和ADC值的变化规律。同时,提供了Matlab代码示例,展示了如何进行纤维追踪计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、扩散张量成像(DTI)脑白质纤维束成像简介

1 DTI技术简介
DTI在DWI技术基础上进行改进, 通过水分子扩散运动的各向异性进行成像, 反映纤维束的完整性等微观特性。扩散即布朗运动, 扩散的方式可分为各向同性扩散和各向异性扩散。各向同性扩散是指分子在各个方向上的运动距离相等, 不受限制。而各向异性扩散方式则在各个方向运动距离是参差不齐的, 具有方向依赖性[2]。DTI常用描述图像特征的参数有FA、ADC及平均扩散率 (mean diffusivity, MD) 。由于FA值表示组织的物理特性, 测量相对更为准确, 且FA图像的灰白质对比较明显, 可以更加直观地选择ROI, 因此在临床得到较为普遍的应用。

2 正常人脑白质老化特征和DTI表现
脑老化是大脑有关部位表现出来的与年龄相关的正常组织生理退行性变化。人脑的诸多功能在脑老化过程中会出现不同程度的衰退, 脑皮质和白质的退行性改变对脑功能的衰退有关键影响。脑白质位于大脑深部, 由神经纤维聚集而成, 连接不同脑区, 构成了复杂的脑神经网络。有研究通过对比健康老年人与青年人的脑体积发现, 相比灰质区, 白质区体积的减少量更加明显, 达到11%左右, 约为灰质区体积减少量的3倍。且研究发现脑白质体积变化规律呈现非线性的倒“U”型的曲线轨迹。在40岁之前全脑白质体积随着年龄增长逐渐增加并达到峰值, 40~50岁之间脑白质体积略有波动, 几乎无明显变化, 而50岁之后全脑白质体积及质量逐渐下降, 约以每10年5%的速率减少, 与年龄具有高度的相关性。正常的脑老化不但与脑白质体积减少有关, 还与某些局部相关区域的萎缩有关。有研究发现正常脑老化过程中存在明显萎缩的区域位于大脑三角部额下回、海马、后扣带回。而通过对比老年人与青年人的脑体积发现, 额叶和胼胝体是发生萎缩的主要区域, 且额叶萎缩在Grieve等[7]的有关研究中已经得到证实。Schmidt等通过纵向实验研究脑萎缩与脑白质改变之间的变化关系发现, 正常老年人脑白质发生改变的年龄要早于脑体积减少的年龄。

目前国内外主要从功能学上基于DTI等技术对脑白质老化进行研究。有研究[9]表明, 脑组织退行性改变DTI主要表现为ADC值的升高及FA值的降低, 并认为这种改变主要是在增龄过程中神经纤维数量、长度和排列紧密程度发生改变, 髓鞘脱失以及细胞外间隙扩大等原因造成的。前额叶是最早被证实老年人脑白质FA值下降最显著的部位。倪建明等通过对脑组织扩散各向异性在正常脑老化过程中变化规律的研究, 发现额叶白质FA值随着年龄的增长而逐渐下降。Damoiseaux等通过与青年组对比, 发现健康老年组FA值的减少区域主要集中在额叶、顶叶和皮层下。在之后的有关研究中, 有学者发现正常脑老化的DTI异常区域除额叶白质外, 前扣带回和胼胝体膝部等区域也有异常。Bendlin等发现胼胝体压部FA值与年龄无相关性, 而胼胝体膝部FA值与年龄的相关系数非常高。该现象有学者解释为胼胝体膝部与两侧大脑半球的前额叶皮质之间有许多重要的纤维束相联系。此外, 还有学者发现随着年龄增长FA值下降的脑区还包括内囊后肢和脑室旁后部, 提示这几个部位的退行性改变与年龄具有很高的相关性。值得一提的是, Sala等和Groves等的研究结果一致表明, 除右侧胼胝体和两侧钩回FA值随年龄增长呈线性增加外, 其他所有脑白质在随年龄增长的过程中FA值均呈线性减少, ADC值呈线性增加。

⛄二、部分源代码

% Example of the FT.m Fiber Tracking function.

% Clean everything
clear all; close all; clc

% Load the DTI fractional anistropy (FA) and Fiber VectorField
% First you have to run the DTI_test.m script !
load(‘FT_data’,‘FA’,‘VectorF’);

% Read the Roi, through which all fibers must go (corpus callosum)
info = gipl_read_header(‘corpus_callosum.gipl’);
Roi = gipl_read_volume(info)>0;

% Fiber Tracking Constants
parametersFT=[];
parametersFT.FiberLengthMax=600;
parametersFT.FiberLengthMin=6;
parametersFT.DeviationAngleMax=1;
parametersFT.Step=0.4;
parametersFT.FiberTrackingComputationTreshold=0.125;
parametersFT.Sampling=2;
parametersFT.textdisplay=true;

% Perform fiber tracking
fibers=FT(FA,VectorF,Roi,parametersFT);

% Show FA
showcs3(FA*2.5), set(gcf, ‘Renderer’,‘OpenGL’); hold on;

% Plot all the fibers
for i=1:length(fibers),
fiber=fibers{i};
h=plot3t(fiber(1:2:end,1),fiber(1:2:end,2),fiber(1:2:end,3),0.2,‘r’);
set(h, ‘FaceLighting’,‘phong’,‘SpecularColorReflectance’, 0, ‘SpecularExponent’, 50, ‘DiffuseStrength’, 1);
end
view(3);
camlight;
material shiny

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]黄干1,姚旭峰,黄钢.磁共振扩散张量成像在正常脑老化研究中的应用[J].毕节学院学报. 2014,32(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值