扩散磁共振成像(dMRI)纤维束追踪是一种先进的成像技术,能够在体内重建宏观尺度下的大脑白质连接。它为使用连接性或组织微观结构测量来定量绘制大脑结构连接提供了重要工具。在过去二十年中,使用dMRI纤维束追踪研究大脑连接在神经影像学研究领域发挥了重要作用。本文对如何使用纤维束追踪技术实现健康和疾病状态下大脑结构连接的定量分析进行了概述。我们主要关注两类纤维束追踪的定量分析,包括:
1)纤维束特异性分析,指通常是假设驱动的、研究特定解剖纤维束的研究;
2)连接组分析,指更多是数据驱动的、通常研究整个大脑结构连接的研究。
我们首先回顾了大多数纤维束追踪定量分析方法中三个主要处理步骤涉及的方法,包括纤维束追踪校正、分割和定量的方法。对于每个步骤,我们旨在描述方法选择、其普及程度以及潜在的优缺点。然后我们回顾了使用定量纤维束追踪方法研究大脑白质的研究,重点关注其在神经发育、衰老、神经系统疾病、精神疾病和神经外科手术中的应用。我们的结论是,尽管在方法技术和应用范围方面取得了长足进步,但在纤维束追踪的定量分析中仍然没有关于"最佳"方法的共识,研究人员在解释研究和临床应用结果时应保持谨慎。本文发表在NeuroImage杂志。
要点
-
对如何使用纤维束追踪技术实现大脑结构连接定量分析的概述。
-
回顾纤维束追踪校正、分割和定量的相关方法。
-
回顾使用定量纤维束追踪方法研究健康和疾病状态下大脑白质的研究。
1.引言
扩散磁共振成像(dMRI)纤维束追踪是一种独特的成像方法,能够在体内对大脑白质连接进行宏观尺度的重建。自1998-2000年首次提出dMRI纤维束追踪方法以来,纤维束追踪已在衰老、发育和疾病等多种神经系统应用中实现了大脑结构连接的绘制。纤维束追踪的最初应用实现了白质纤维束的可视化,这种主要定性的方法在临床和神经解剖学研究中至今仍然具有重要意义。近来,定量方法已成为使用纤维束追踪研究大脑连接性和组织微观结构的流行工具。本文对如何使用纤维束追踪实现大脑结构连接的定量分析进行了概述。本文旨在对研究白质的研究人员、定量分析方法的开发人员以及解释纤维束追踪相关结果的临床医生有所帮助。
由于在过去二十年中提出了大量定量方法且该领域不断发展,与dMRI纤维束追踪定量分析相关的术语激增。因此,我们首先列出了本文中使用的常见术语及其定义,如表1所示。我们还提供了本文将使用的许多关键概念的可视化图示(图1)。
表1. 本文中使用的常见术语及其定义。我们注意到,有一些传统术语虽然被广泛使用,但在技术或生物学上并不精确;在本表中,我们强调了这些术语,并建议在今后的研究中避免使用它们。
术语 | 定义 |
---|---|
纤维束追踪 | 任何从dMRI数据估计白质纤维通路解剖轨迹的计算过程。注:"纤维追迹"和"纤维追踪"也被广泛使用。然而,我们强烈建议避免使用这些术语,因为"追迹"经常用于体外示踪剂注射的情况,而"追踪"指的是跟随移动物体,但白质纤维并不移动。 |
流线 | 在三维空间中的一组有序点,通过执行纤维束追踪来编码估计的轨迹(见图1(b))。注:"纤维"也被广泛使用。然而,我们强烈建议避免使用这个术语,因为"纤维"指的是生物学概念,而"流线"意味着对其进行数字重建。 |
追踪图 | 一组流线,通常以覆盖整个大脑白质的方式生成,以捕捉任何可能的白质连接。这可以被称为"全脑追踪图"(见图1(c))。 |
流线簇/流线连接/边缘内流线/白质区块 | 通过对追踪图细分得到的一组流线。这样的集合可以由多种追踪图分割方法产生;因此有几种不同的命名。虽然这样的集合在文献中经常被称为"纤维束"、"纤维通路"或"纤维簇",但为了明确流线集合是一种计算数据表示,我们在本文中避免使用"纤维"一词。 |
纤维束/纤维通路/纤维束/纤维路径 | 这些术语具有生物学含义,指在大脑中形成皮层间或皮层-皮层下连接的一组白质纤维(轴突)(Schmahmann, Schmahmann, Pandya, 2009)。在神经影像学文献中,这些术语通常用于指代使用纤维束追踪重建的白质连接。遵循这种惯例,在本文中,我们将使用"纤维束"、"纤维捆"、"纤维束索"或"纤维通路"这些术语来指代与已知解剖学相对应且具有传统名称的白质结构(例如胼胝体或皮质脊髓束)(见图1(d))。(见图1(d))。 |
大脑连接性 | 在神经影像学中,大脑连接性这一有些难以定义和模糊的概念指的是不同脑区之间结构和/或功能关系的度量。 |
结构连接性 | 一种特定类型的大脑连接性。如果一个纤维束在物理上连接两个脑区,则这两个脑区存在结构连接。这通常通过dMRI在人体内测量。然而,对于如何最好地量化这一点尚无共识。结构连接性测量(也称为"权重"或"强度")可以包括从感兴趣通路(例如连接两个特定端点的通路)对应的特定流线集合计算得到的各种定量连接性测量。其目标通常是近似真实的潜在纤维密度或轴突数量。 |
连接组/大脑连接矩阵 | 一个二维矩阵,其行和列对应于特定的大脑灰质感兴趣区(ROIs),矩阵中每个元素存储的值是对应该行和列的区域之间计算的连接"强度"(见图1(e))。这种数据在数学上被描述为图。这种矩阵表示直接受到动物侵入性轴突追踪实验的启发,其中多项研究的结果以定量连接矩阵的形式表示。在没有进一步说明的情况下,我们在整篇文章中使用"连接组"隐含指的是使用dMRI纤维束追踪构建的结构连接组,而不是通过其他成像模态(如功能性MRI)得到的连接组。 |
扩散模型 | 一个理论模型,将dMRI信号与细胞水平的组织微观结构的显著特征联系起来。这包括组织微观结构或生物物理模型,如神经突方向离散度和密度成像(NODDI)和自由水(FW),以及包括扩散张量、扩散峰度和许多其他的扩散信号表示。 |
微观结构测量 | 从每个体素中拟合的扩散模型提取的任何参数,可提供关于潜在组织微观结构的信息(例如,描述水分子扩散各向异性的分数各向异性(FA))。 |
纤维束测量/剖面图/基于纤维束的形态测量 | 一种沿纤维束剖面分析技术,用于研究微观结构测量沿纤维通路的分布。 |
图1. 纤维束追踪的图解
(a)扩散磁共振成像(dMRI)数据示例,也称为扩散加权成像(DWI)数据。
(b)执行纤维束追踪后计算得到的单条流线。
(c)覆盖整个白质的全脑追踪图示例,由流线组成。
(d)由一组流线组成的纤维束,代表称为胼胝体的解剖纤维束。流线按微观结构测量值(即测量水分子扩散各向异性的分数各向异性(FA))着色。沿纤维束的FA分布展示了该纤维束的测量结果。在流线端点区域(靠近皮层)可以看到较低的FA值,在流线中部(深部白质)可以看到较高的FA值。
(e)基于全脑白质纤维束追踪构建的大脑结构连接矩阵示例。每行(和列)代表一个大脑灰质感兴趣区(ROI)(参见图3(c)中的大脑灰质分区示例),矩阵中的每个元素值表示相应两个ROI之间的白质连接强度(在本例中量化为流线数量)。
许多定量纤维束追踪方法可用于研究健康和疾病状态下的大脑结构连接。这些分析的基本目标是估计感兴趣通路的定量连接性(或微观结构)测量。纤维束追踪的定量分析可分为两大类或风格:纤维束特异性分析和连接组分析(这种分类很有帮助但并不完美,因为某些方法混合了两种分析风格的特点)。纤维束特异性分析指的是通常假设驱动的、研究特定解剖结构纤维束的研究。纤维束特异性分析越来越多地被采用,特别是在研究健康和疾病状态下的局部白质区域方面。连接组分析指的是更多数据驱动的、通常研究整个大脑结构连接的研究。这类分析旨在理解全脑解剖连接的模式,因此依赖于对整个白质进行的纤维束追踪。
本文首先简要介绍纤维束追踪(第2节),然后回顾定量纤维束追踪分析的方法(第3-5节),接着回顾使用定量纤维束追踪分析研究健康和疾病状态下大脑的研究(第6节)。在方法回顾部分,我们根据大多数纤维束追踪定量分析方法中的三个主要处理步骤来组织内容:
第一个共同步骤是纠正纤维束追踪重建中可能损害或完全阻碍其定量分析的潜在偏差;我们称之为纤维束追踪校正(第3节)。
第二个共同处理步骤是识别对大脑连接定量有意义的白质通路(如追踪图的细分);我们称之为纤维束追踪分割(第4节)。
第三个共同步骤是提取描述大脑连接微观结构和/或"强度"的定量指标;我们称之为纤维束追踪定量(第5节)。在每节中,我们旨在描述方法选择、其普及程度以及潜在的优缺点。最后,我们回顾了使用定量纤维束追踪方法研究大脑白质的研究,包括在发育、衰老、神经系统疾病、精神疾病和神经外科手术中的应用(第6节)。
2.纤维束追踪简介
"纤维束追踪"可以指任何从dMRI数据估计白质纤维通路解剖轨迹的计算过程。有许多可用于执行纤维束追踪的方法,包括基于扩散张量模型的传统流线追踪(该方法最初于1993年在计算机图形学领域被提出用于张量场可视化,称为"超流线")。最近,许多使用先进扩散模型的流线追踪方法被提出并正在积极开发中。此外,还提出了许多替代性的纤维束追踪算法,如前沿演化、测地线(基于假设端点识别可能的连接轨迹)、基于图谱的方法、差分纤维束追踪以及各种形式的"全局"纤维束追踪(通过同时将整个纤维束追踪重建拟合到所有图像数据)。工作还在进行中,以使用机器学习改进纤维束追踪。
虽然详细介绍纤维束追踪方法超出了本文的范围,我们建议读者参考专门针对纤维束追踪算法的这些综述论文。
有许多可用于进行纤维束追踪研究的软件包[ANIMA、BrainSUITE、Camino、COMMIT、Diffusion toolkit、Dipy、DMIPY、DSI studio、DTIstudio、ExploreDTI、FiberNavigator、FSL、MITK、MRtrix3、PANDA、SlicerDMRI、TractSeg和Tracula]。需要注意的是,纤维束追踪对底层纤维追踪算法的选择很敏感,这可能进一步影响使用纤维束追踪数据的任何后续定量分析。一方面,纤维束追踪结果可能在众多可用的扩散模型和追踪方法之间存在差异。另一方面,纤维束追踪结果对某一算法内的参数选择(如种子点和停止阈值)也可能很敏感。虽然已经进行了许多研究来比较不同的纤维束追踪算法,但对于"最佳算法"仍然没有共识。
3.改进纤维束追踪质量:纤维束追踪校正方法
纤维束追踪校正方法的目标是解决常规或原始纤维束追踪算法中产生的潜在偏差和错误。当这种问题在示例数据中能够被清晰地展示,并且提出了一种专门针对该问题的内在解决机制时,预计在实证图像数据重建中使用这种机制将会提高重建的整体生物学准确性(即使缺乏直接验证),这对于解剖纤维束的提取(第4.1节)和定量结构连接矩阵的构建(第5.5节)都很重要。在本节中,我们考虑了dMRI纤维束追踪中几乎无处不在的"流线"范式,以及通过特定的针对性机制来改善特定不良行为或偏差的方法;参见图2中包含的相关纤维束追踪偏差的可视化总结。
图2. 第3节中描述的纤维束追踪中各种形式的错误和偏差的演示。这些仅为示例图像;因此存在许多其他可能的偏差和错误表现形式。
1.低阶积分方法低估了束的曲率,导致重建的路径超出了潜在的曲线轨迹。
2.在缺乏专门约束的情况下,流线可能在已知不含轴突突触的位置终止。
3.在一个束内产生的流线数量可能与该束的潜在轴突密度不成比例。
4.由于扩散MRI相对于脑回折叠的复杂性分辨率较低,流线终止可能在脑回冠处累积,而不是均匀分布在皮层带上。
5.在宏观白质束相交的地方,流线可能错误地穿过一个束的一部分和另一个束的一部分,产生在潜在结构中不存在的轨迹(Schilling et al., 2021)。
图3. 纤维束追踪分割
(a)通过在DWI数据中执行纤维束追踪计算得到的全脑追踪图示例;
(b)从追踪图中提取的解剖纤维束示例;
(c)通过在所有FreeSurfer皮层区域对之间执行全脑纤维束追踪分割构建的结构连接矩阵示例。
3.1. 曲率过冲偏差
可能是dMRI纤维束追踪中最早确立的偏差是,如果流线算法仅在当前顶点的局部纤维方向上采取有限大小的步长(所谓的"一阶"方法),弯曲束中的流线将倾向于低估曲率,导致错误的轨迹(Tournier et al., 2002)。虽然使用相对于图像体素大小较小的步长可以缓解这个问题,但在追踪过程中使用直接考虑这种曲率的高阶积分方法是一个更直接的解决方案(Basser et al., 2000)。然而,以与考虑交叉纤维的扩散模型兼容的方式来实现这一点在技术上可能很困难。
3.2. 终止偏差
"终止"指的是流线传播停止的位置。正如纤维束追踪算法应该产生其切线忠实于潜在纤维方向的流线,这些流线也应该在与潜在纤维束端点对应的位置终止。这方面的偏差或不足可能导致流线过早地在白质中停止(尽管白质纤维在灰质中突触),甚至进入充满液体的区域或跨越沟裂。这些问题可能很普遍,因为纤维束追踪算法通常仅使用每个图像体素中拟合的扩散模型(如扩散张量或约束球面反卷积(CSD))。虽然这些模型提供了关于纤维方向的强有力证据来指导流线传播的方向,但它们提供的关于这些纤维在哪里停止(因此流线应该在哪里理想地终止)的证据很弱(实际上,扩散加权信号本身并不提供纤维终止的直接证据)。大多数纤维追踪算法利用扩散模型各向异性和流线曲率等特征的启发式阈值作为纤维束追踪终止标准。然而,这些度量对于这项任务的间接性质,加上扩散加权成像的空间分辨率较低,导致这种错误高度普遍。因此,这些常见的终止标准不足以确保生物学上合理的流线生成,导致全脑纤维束追踪中相当一部分流线对白质纤维连接的量化不合理。
流线终止的病态性质可以通过利用解剖参考数据来施加相关的先验信息来解决。这可以确保重建的流线满足一些我们可以基于对大脑中神经元组织方式的先验理解而做出的基本假设。例如,轴突从灰质中的细胞体发出,并与大脑或身体其他地方的其他细胞相连,但它们不会在白质中形成突触,也不会延伸到脑室。与常规纤维束追踪算法不同,在常规算法中,终止点可以分布在大脑的几乎任何地方,解剖约束纤维束追踪(ACT)框架和类似方法确保流线传播和终止都基于对神经元纤维位置的知识进行约束,例如,通过白质连接灰质区域。虽然这些方法不能保证每条流线都准确追踪潜在纤维连接的完整轨迹,但它们确实防止了生成不可能代表大脑中生物连接的流线。
3.3. 连接密度偏差
虽然流线纤维束追踪提供了与潜在纤维方向一致的结构连接轨迹估计,但它不能保证重建连接的数量与这些潜在纤维的密度(即白质区域中实际的轴突数量)之间的一致性。这个限制经常被表述为"流线计数不是定量的"的口头禅。有许多因素可能调节通路之间或个体间通路内的经验流线计数。许多是任何特定流线算法操作细节的衍生现象,因此难以表征。然而,可以简单地证明,在连接强度没有差异的情况下流线计数可能被错误地调节,而在连接强度存在差异的情况下流线计数可能错误地保持不变(图2,图3),这突出了对原始流线计数应用如此强烈的生物学解释的不恰当性。
如果在整个白质中,重建连接的局部密度和扩散图像数据所证实的局部纤维密度之间存在对应关系,这将使人们对基于纤维束追踪的连接密度作为定量测量的解释更有信心。最初,实现这一目标的愿望仅限于第2节中提到的"全局"纤维束追踪算法。最近,已经设计出了通过利用预先生成的全脑流线追踪图并调节每条流线对重建白质纤维密度的贡献来解决这个任务的方法。最初的方法通过选择最适合扩散图像数据的流线子集来实现这一点,即BlueMatter、MicroTrack和SIFT,而后来的方法估计应用于每条流线的乘数,即COMMIT、LiFE、SIFT2、COMMIT2和COMMIT2tree;这些"权重"代表每条流线的有效横截面积,可以直接用作连接密度的测量(或用于调节流线对其他聚合连接"强度"测量的贡献;参见第5节)。
3.4. 脑回偏差
纤维束追踪中的脑回偏差是指流线倾向于在脑回而不是脑沟处终止的偏差,这降低了纤维流线的起始或终止与示踪研究和组织学已知真实情况的一致性。脑回偏差的来源是多方面的,如皮层灰质和浅层白质交界处轴突排列的复杂性。由于MRI空间分辨率有限而产生的部分容积效应,使得根据重建的纤维方向分布(FODs)区分复杂的纤维构型变得困难。提高图像分辨率有利于减轻脑回偏差,但受到所获得dMRI数据信噪比的限制。即使在高分辨率dMRI数据上操作,当前的纤维束追踪算法也被证明与组织学染色得到的真实纤维投射存在偏差,在脑回冠处的流线密度大于脑沟壁。皮层脑回的复杂折叠和卷曲也给长程连接的重建带来了挑战。
已经提出了一种表面流动方法来模拟脑回冠处浅表轴突纤维的排列,从而改善流线的起始或终止与组织学数据预期的一致性。最近,研究表明使用非对称FOD技术可以减轻脑回偏差,该技术能够描绘出出现在浅层白质处的高度弯曲的纤维几何结构。
3.5. 假阳性连接
dMRI采集的分辨率(立方毫米)与轴突的典型大小(几微米)之间存在几个数量级的差距。这种差异在白质中引入了模糊性,可能与多种流线配置兼容,纤维束追踪难以解决。纤维束追踪的这种病态性质在过去几年引起了新的关注,一些研究对重建的解剖准确性提出了严重关切。特别是,研究表明纤维束追踪技术存在大量假阳性,即重建的流线不对应真实的解剖束,这些错误的连接可能严重影响连接性的估计。
在构建结构连接矩阵时,一种广泛使用的尝试减轻假阳性连接的方法是阈值化,即移除强度小于某个截止值的边。这种策略隐含地假设重建边的强度与其有效性之间存在相关性,但由于流线纤维束追踪产生的错误不仅仅是随机变异,这种假设可能以多种方式被违反。阈值化区分真实和虚假连接的能力仍然是该领域的一个争议话题。
已经提出了替代解决方案,这些方案要么是基于知识的,要么是数据驱动的。前者在第4.1节中描述,通常使用全自动或半自动算法,如聚类,作为基于解剖先验或几何特性(如长度和形状)检测和丢弃被认为是异常值的流线的手段。另一方面,第3.3节中描述的用于解决密度偏差的方法也可以用作过滤程序,其中不被获得的dMRI数据支持的流线(即估计权重为零的流线)被丢弃。虽然这些方法在移除重复流线或可能是虚假的孤立流线方面取得了良好的效果,但实际上没有一种方法在区分连接组网络中的真实和虚假连接方面证明是有效的。
最近的研究表明,通过结合基于知识和数据驱动的策略,可以显著提高过滤方法的性能。这些新的公式允许明确考虑大脑中连接的两个基本假设:(1)纤维自然组织成束,(2)束的数量应该较少以最小化整体布线成本。这种先验知识有助于解决数据中存在的一些模糊性,因此可以显著提高连接组的解剖准确性。这是通过将流线组织成组,并寻求用最小数量的束来解释测量信号的解决方案来实现的,使用群Lasso正则化,从而在连接空间而不是个别流线空间中促进稀疏性(这是先前过滤方法隐含的做法)。
关于确定最佳过滤方法的研究仍在进行中,对这些方法对结构连接组的有益还是有害效果存在一些分歧。
4.定义量化区域:纤维束追踪分割方法
白质纤维束追踪分割的目标是识别对大脑结构连接性量化有意义的白质通路(例如,追踪图的细分)。至关重要的是,这一步骤使得对分割的白质通路进行跨受试者定量比较成为可能。纤维束追踪分割对于定性应用也很重要,例如纤维束的可视化,如用于神经外科白质图谱绘制。如图3所示,纤维束追踪分割方法通常可分为两类,分别与纤维束特异性和基于连接组的分析方法相关。第一类方法识别解剖白质纤维束并给它们传统命名(如弓状束或皮质脊髓束)。第二类方法基于流线轨迹和/或端点信息将整个白质分割或细分为多个白质区块。
4.1. 解剖纤维束识别
解剖纤维束识别旨在识别与解剖命名的白质纤维束相对应的追踪流线。考虑到白质解剖结构的复杂性和追踪图中流线的大量数量,这项任务并非易事。
传统的解剖纤维束识别方法依赖于手动流线选择,也被称为虚拟解剖,其中解剖学专家使用在大脑中手动绘制的感兴趣区交互式地选择追踪流线。通常,包含性ROIs放置在灰质(皮层和皮层下)中以定义流线应该终止的位置,在白质中以定义流线应该通过的位置,而排除性ROIs放置在其他区域以排除不需要的流线。手动流线选择被认为是在纤维束追踪中勾画解剖纤维束的金标准,并被广泛用于验证其他解剖纤维束识别技术。手动选择也用于需要特定临床专业知识的研究,例如肿瘤患者的术前白质图谱绘制,其中肿瘤和病变可能大大置换白质纤维束。
由于手动纤维束选择耗时且具有高临床和专业劳动成本,现代研究越来越关注自动化纤维束识别方法。这些方法可以分为三类:基于ROI的方法、流线标记和直接分割。
基于ROI的方法是最常用的。它们自动计算ROI并基于流线终止和/或通过的ROI进行流线选择。大多数基于ROI的方法利用大脑ROI图谱,并使用图像配准来自动将图谱空间中的ROI对齐到受试者空间。目前,常用的大脑ROI图谱包括Freesurfer、MNI-ICBM152和JHU-DTI提供的图谱。也有一些基于ROI的方法使用机器学习直接在受试者空间预测ROIs。
第二类自动化纤维束识别方法是流线标记,它为每条单独的流线分配一个解剖标签。通常,流线标记是通过计算每条流线与参考纤维束分割中标记流线的几何距离来完成的,然后基于最近的参考纤维束分配流线标签。也有基于学习的分割方法,从参考纤维束分割数据训练模型并预测新受试者中每条流线的解剖标签。为了减少对每条流线的标记量,许多流线标记方法首先将流线分组成簇(称为纤维簇类),然后为每个簇分配一个解剖标签,从而标记每条流线。
第三类自动化纤维束识别在文献中被称为直接分割。与上述在预计算的追踪流线数据上工作的方法不同,直接分割方法在DWI数据或衍生的体积图像数据上操作,以预测多个感兴趣纤维束的位置,然后仅对这些纤维束执行追踪。虽然直接分割方法相对较新且使用较少,但一些方法的成功表明了极具前景的纤维束分割性能。
在选择解剖纤维束识别方法时应考虑几个要点:
1.由于纤维束追踪没有真实值,验证纤维束识别方法很困难。一种常用的评估策略是评价其可重复性。
2.一个好的纤维束识别方法应该在不同人群和采集中保持高度一致性。这对于自动化纤维束识别方法特别重要,因为它们对于进行跨生命周期和多中心研究至关重要。
3.由于缺乏一致的纤维束定义,解剖纤维束识别结果在研究间可能存在高度变异性,不同方法可能对同一目标解剖纤维束给出不同的结果。
4.必须选择执行纤维束追踪的方法:如果感兴趣的纤维束数量较少,特定纤维束追踪在计算上可能更有效率,而全脑追踪计算成本可能很高,但能够实现对整个白质的纤维束识别或分割。
5.选择不同的纤维束识别方法可能需要不同的图像配准方法。基于ROI的方法通常需要体积配准,而许多流线标记方法使用基于流线的配准来直接将个体追踪数据对齐到有参考纤维束分割的追踪图谱。
最后,深度学习技术越来越多地应用于解剖纤维束识别,显示出对未来工作和计算速度改进的高潜力。
4.2. 全脑追踪图的分区划分
全白质(由全脑追踪图表示)的分区划分旨在实现对全脑所有可能白质连接的定量分析。一般有两类方法:基于皮层分区的方法和纤维聚类方法。基于皮层分区的方法使用更为广泛,因为它们能够构建连接矩阵并随后使用图论技术进行分析。虽然相对较少使用,但纤维聚类追踪分区方法越来越多地应用于研究大脑结构连接,如疾病分类和人群间统计分析。(注意,这些方法也许更准确地应该称为"流线聚类",但"纤维聚类"这个术语在文献中已经非常确立。)
基于皮层分区的方法从以灰质为中心的角度出发。它们根据皮层(有时还包括皮层下)灰质分区对追踪进行划分,重点关注不同灰质ROIs之间的结构连接。具体来说,通过提取连接ROIs对的流线来执行追踪分区。因此,所得的追踪分区主要由皮层分区方案的选择决定。大多数方法采用从T1加权或T2加权MRI计算得到的皮层分区。最常用的皮层分区是Freesurfer Desikan-Killiany皮层分区,同时也广泛使用许多其他皮层分区方案。许多基于皮层分区的方法也使用了用功能性MRI数据计算的功能性皮层分区。最后,另一种方法是使用逐顶点的皮层"分区",即通过识别连接皮层表面顶点对的流线。目前,关于哪种大脑分区技术最有用尚无共识。
相比之下,纤维聚类方法从以白质为中心的角度出发。它们根据流线的几何轨迹对追踪流线进行分组,根据白质解剖来描述结构连接。通常,纤维聚类方法首先计算成对流线的几何相似性,然后使用计算聚类方法将相似流线分组成簇。与专注于流线终端区域的基于皮层分区的方法相比,纤维聚类方法利用了流线轨迹的全长。因此,基于皮层分区的方法可能错误地将在白质中遵循完全不同轨迹但最终到达相同灰质端点的流线分在一组,而如果流线通过相同的深部白质区域,纤维聚类则可能对它们在皮层的分散不敏感。此外,与利用额外皮层分区信息的基于皮层分区的方法不同,大多数纤维聚类方法仅在追踪数据上工作,因此不需要MR模态间配准。由于这些因素,一些研究已经证明了纤维聚类方法相对于基于皮层分区方法的优势,包括受试者间更一致的分区和测试-重测扫描间更高的可重复性。
在选择执行全白质分区的方法时,前面描述的与解剖纤维束识别的可重复性和在不同人群和采集之间的一致性相关的要点也是需要考虑的重要因素。
对于全白质分区还需要强调一个额外的要点,即分区的尺度或粒度,也就是分区后要获得多少个白质区块。对于构建连接组,这与皮层分区的选择有关,而对于纤维聚类,这与聚类算法获得的纤维簇数量有关。不同研究应用了各种分区尺度,从数十到数百万个白质区块不等。选择分区尺度取决于目标应用,例如,研究表明细粒度白质分区(超过2000个区块)可能有利于机器学习和统计分析,而粗粒度分区(少于200个区块)可以提高个体间连接组的一致性。我们注意到,个体间连接组的一致性也可以通过其他方法改善,例如基于一致性的阈值处理。
5.执行定量分析:纤维束追踪定量方法
纤维束追踪定量的目标是提取有用的定量测量来评估大脑白质通路的结构连接。在本节中,我们将首先介绍可以从纤维束追踪计算的定量测量。然后我们将重点关注如何在单个白质纤维通路内提取这些测量,以及如何执行过滤技术来减少提取测量中的潜在偏差。接下来,我们介绍如何将提取的测量用于解剖白质纤维束的纤维束特异性分析和用于计算构建连接矩阵的边权重。最后,我们将介绍基于图论测量和更高级连接组测量的全脑连接性拓扑分析。
5.1. 从纤维束追踪计算的定量测量
从纤维束追踪可以计算许多定量测量,这些测量可以根据用于计算的数据来源分为两类。第一类定量测量仅基于追踪数据本身,通常用于定义连接强度。流线数量(NOS)是一个广泛使用的量化连接强度的测量。一些在动物上使用侵入性示踪技术进行的研究表明,NOS与使用体外示踪数据测量的生物连接性有很好的一致性。然而,由于测量的dMRI信号和实际轴突尺寸之间的分辨率差异,许多研究强调NOS(流线数量)并不能提供真正定量的连接强度测量。最近的工作旨在提供更好地估计潜在连接密度的替代性更定量的连接性测量,或调节流线对连接性聚合测量的贡献。其他可以直接从追踪计算的定量测量,如纤维束的体积和长度,也被使用。
第二类从追踪计算的定量测量利用通常从扩散模型(如扩散张量模型)或其他定量成像模态(如髓鞘成像)计算的微观结构测量。在这类测量中,追踪通常用于定义采样微观结构测量的位置。(这种采样可以在执行追踪之后进行,或在执行追踪过程中作为采样或计算扩散模型的一部分)。最广泛使用的微观结构测量是基于dMRI信号的计算建模。常用的基于扩散建模的微观结构测量包括从传统扩散张量模型得到的分数各向异性、轴向、径向和平均扩散率(分别为FA、AD、RD和MD)。更高级的测量包括从扩散峰度成像(DKI)、自由水建模、神经突方向离散度和密度成像(NODDI)、球面平均技术(SMT)或表观纤维密度(AFD)得到的反映细胞间和细胞内信号分数的测量。重要的是要意识到dMRI微观结构测量的变化可能是非特异性的,部分原因是体素平均的dMRI信号(毫米尺度)与扩散水探测的个别轴突和细胞的尺度(微米尺度)之间的差异。例如,许多因素(如细胞死亡、水肿、胶质增生、炎症、髓鞘化改变、交叉纤维连接性增加、细胞外或细胞内水分增加等)可能导致FA的变化。其他用于追踪定量的方法利用来自dMRI以外的成像模态的信息,如T1加权(T1w)成像、髓鞘敏感图和g比值。例如,研究人员使用纵向弛豫率(R1),这是一种对髓鞘敏感的测量,沿着纤维束进行测量。
这些微观结构测量可以通过几种方法沿纤维通路计算。通常,这是通过在每个体素中计算模型来得到3D微观结构图(如FA图像),然后使用追踪来定义应该从中采样该微观结构测量值的位置。这种采样可以通过首先生成一个定义流线通过的体素的二值掩模,然后在该掩模内从底层微观结构图像中采样来完成。或者,采样也可以通过从预先计算的微观结构图像中在流线的每个点采样微观结构测量来完成。除了使用预先计算的微观结构图像,还可以在执行追踪时同时估计扩散或纤维模型,使得微观结构测量直接在每条流线的点上计算。
5.2. 分析领域:在白质纤维通路内提取定量测量
在选择感兴趣的定量测量(第5.1节)和纤维束追踪分割方法(第4节)之后,有许多方法可用于在单个白质纤维通路内提取指标。这对于实现纤维束特异性分析(第5.4节)和构建连接矩阵(第5.5节)很重要。可以采用两种主要策略:使用标量值作为汇总统计,或使用沿纤维通路长度的数据。
提取定量指标最常采用的策略是计算一个标量值,作为纤维通路的汇总统计量。(这对于基于连接组的分析是必要的,也是纤维束特异性分析的常用方法)。虽然某些定量指标本质上为每条通路提供一个单一的标量值,例如NOS(流线数量)或纤维束体积,但其他指标(例如定量指标的采样值)则需要计算某种统计量以产生这样的标量。对于微观结构指标,纤维通路内的平均值是最广泛使用的。其他汇总统计量如中位数、最大值和最小值也被使用。根据沿纤维通路计算微观结构指标的方式(如第5.1节所述),汇总统计量可以通过几种方法获得。它可以在定义纤维通路的二值掩模内计算(例如,掩模内的平均FA值)。它还可以通过对流线上的每一点采样的微观结构指标进行平均计算。对于在纤维通路内测量的数据,选择最佳的汇总统计量仍然未定。例如,与平均统计量相比,研究表明中位数对异常值更具鲁棒性,并且不依赖于微观结构参数沿流线分布的正态性假设。一项研究表明,在基于机器学习的疾病分类中,最大值和最小值比平均值更具区分性。
量化单个纤维通路的第二种策略是测量沿纤维通路的微观结构指标的分布。这可以使研究沿纤维通路局部区域的组织微观结构成为可能。该方法需要定义坐标系、采样框架或基于表面的表征,以确定如何采样感兴趣的微观结构数据。通常,数据在通路中每条流线的相应点上进行平均,这样数据可以根据流线弧长或其他参数化方式进行分析(例如,沿束或沿通路图)。其他方法为通路拟合中轴面表示,这样采样数据可以在二维中表示,不仅可以沿通路分析,还可以横跨其横截面进行分析。
5.3. 使用过滤技术的定量测量
第3.3节讨论的过滤方法也可以用于执行"微观结构指导的"追踪,目的是提取白质纤维通路的定量测量并减少连接性估计中的潜在偏差。假设对应于单条流线的微观结构特性沿其路径保持恒定,这些方法为每个重建的通路分配特定的微观结构特性。基本假设来自这样一个事实:从追踪重建的流线不能代表单个轴突,而是代表遵循相同轨迹的一组轴突,因此我们可以假设在可达到的分辨率下磁共振信号敏感的微观结构特性平均保持恒定。
这些方法已被用于研究健康和病理大脑的特性,显示出比标准NOS(流线数量)更好的性能。特别是,由于其灵活的实现,COMMIT、COMMIT2和COMMIT2tree允许将追踪与组织微观结构的生物物理模型结合起来,从而使人们能够获得个别束的更定量和生物学信息特征,如平均轴突直径、髓鞘含量和束特异性T2。
5.4. 使用统计或机器学习技术的纤维束特异性分析
一旦为个别纤维通路提取了定量测量,就存在几种纤维束特异性分析的选项,这些分析可能是使用统计分析的假设驱动方法,或使用机器学习的数据驱动方法。这些方法可能依赖于每个纤维束的统计汇总,或分析沿纤维束的数据。
一种广泛使用的分析基于假设驱动策略,用于评估组间感兴趣纤维束的统计差异(如健康和疾病之间,或疾病的不同亚型之间)。通常,给定感兴趣的定量测量,从感兴趣的纤维束中提取选定的统计汇总(如所选微观结构测量的平均值),并使用诸如Student's t检验、ANOVA或其他更高级的统计分析方法来计算组间差异水平。另一种假设驱动分析使用回归模型(如广义线性模型或支持向量回归)来评估纤维束定量测量与行为或疾病症状评分的相关性。这些分析已被应用于研究,例如,白质纤维束如何在不同疾病严重程度的个体中受到影响,纤维束如何与认知和社会情感功能相关,以及纤维束如何在人类神经发育和衰老过程中发展。需要注意的一个重要点是,如果分析了多个纤维束和/或多个定量测量,需要进行多重比较校正。然而,重要的是要强调,这种假设数据样本独立性的多重比较校正方法,在应用于对非独立的多个纤维束和/或定量测量进行的测试时可能过于保守。
另一种纤维束特异性分析策略是数据驱动的,使用机器学习技术来执行疾病分类和预测等任务,以及行为测量和特征的预测。在机器学习分析中,从个别纤维通路计算的定量测量被视为特征描述符,输入机器学习算法以从具有已知信息的训练样本集中训练模型。然后可以使用训练好的模型来预测新样本。与通常旨在找到具有统计组差异的白质结构的统计分析方法不同,基于机器学习的方法旨在提供预测相关性。在组内异质性较大的情况下(如精神疾病中),这可能是有利的,因此比较"平均患者"与"平均对照"的统计组比较不具有信息性。机器学习的另一个优势是它可以轻松应用于多模态数据。
除了使用单个标量值来总结整个通路外,许多方法执行沿纤维束分析来研究微观结构测量沿纤维通路的分布(称为"纤维束测量"、"剖面图"和"基于纤维束的形态测量")。沿纤维束分析能够研究纤维束沿线的局部区域。在沿纤维通路的每个流线点映射微观结构测量之后,一种广泛使用的策略是分析沿纤维束轮廓的数据。一种流行的方法是在通路中沿每条流线的对应点平均数据,并利用原型、核心或平均流线来实现比较受试者或组的统计分析。其他方法可以在统计分析中使用整个纤维束的流线。还有研究分析了表示为表面的纤维束或执行数据降维技术来减少沿纤维束的点态测量的维度。几项研究表明,沿纤维束分析可能对检测纤维束内平均值中不明显的差异更敏感。
5.5. 构建结构连接矩阵
提取的个别纤维通路的定量测量也可用于构建结构连接矩阵,以映射所有灰质区域对之间的全脑结构连接网络。这种方法是由从关注孤立区域的作用向理解大脑作为网络系统的总体焦点转移所驱动的。构建连接矩阵包括两个主要步骤:首先,需要对全脑追踪图进行分区以计算大脑中所有可能的纤维通路,即连接所有灰质区域对的白质区块。然后,需要一个"连接性"度量来定义连接矩阵中的定量边权重。这通常通过计算每个白质区块的标量值来完成。连接矩阵分析最常用的标量值是NOS(流线数量),其中较高的值被认为表示灰质区域对之间的连接更强。其他通常被解释为连接"强度"测量的标量值包括微观结构测量。对于被解释为与连接"强度"反相关的标量值,在任何后续连接性分析之前可能会使用倒数或对数函数对连接矩阵进行变换。
虽然连接矩阵的构建很简单,但研究人员指出需要仔细考虑多个因素。选择灰质分区方案是构建结构连接矩阵时的第一个基本考虑因素,已经证明它在连接组分析中具有重要影响。处理流程的许多组成部分也可能影响所得的连接组矩阵数据,甚至细节到流线分配给这些区块的机制层面。此外,连接组通常进行后处理以减少图测量估计中的潜在偏差。选择纤维束追踪过滤策略很重要,已经证明会影响大脑网络拓扑的分析以及在分析连接组时的敏感性和特异性。
5.6. 图论测量和高级结构连接组测量
结构连接矩阵定义了一个全脑解剖连接的网络(或图),其中节点通常是灰质区域或ROIs,边表示这些区域之间的连接。图论和网络科学学科提供了一个量化大脑连接网络特性的框架,并研究结构布线的全脑模型。在过去的二十年里,将大脑作为网络进行研究在神经科学和神经影像学界变得越来越流行,产生了连接组学和网络神经科学的新领域。
图4. 人类连接组的图论分析
(a)结构连接的网络图,其中节点代表灰质ROIs,连接描绘白质纤维束。
(b)应用于结构连接分析的关键图论概念示意图。连接的粗细表示两个ROIs之间的结构连接强度(如NOS或整合FA)。节点水平的图论测量如度、强度和中心性识别ROI B作为网络中的重要枢纽。在中观尺度上,可以观察到两个模块或社区。模块内连接性密集,模块间连接性稀疏。在全局尺度上,通信路径描绘了连接解剖学上未连接ROIs的多步序列。连接ROIs A和C的两条可能路径以绿色(最短路径)和橙色(替代路径)突出显示。
已经提出了大量图论测量来研究大脑连接组的网络特性。选择关注哪些测量取决于当前的研究问题和假设。图论测量可以根据其分辨率或范围分类—从量化个别ROIs(节点)属性的局部测量,到描述相互连接的ROIs簇的中观尺度测量,再到描述全脑连接特性的全局测量,如大脑中的网络通信。以下我们给出这些从局部到全局每个层次上量化大脑网络方面的流行图论测量的例子。
在局部水平上,节点中心性测量为个别脑区整合重要性提供了有用的表征。度和强度是最简单和最流行的节点中心性,分别量化个别区域的连接数量和连接权重之和。中心性测量在识别可能在整合性脑功能中发挥中心作用的枢纽区域方面特别有用。实际上,已经发现通过这些测量识别的枢纽需要高代谢消耗,并在脑疾病中受到不成比例的影响。
在中观尺度上,结构连接可以被分为模块(也称为社区),反映嵌入在大脑布线中的簇的存在。发现这种簇的做法,称为社区检测或模块分解,有助于将结构网络的复杂性归纳为粗粒度块,有助于识别与特定研究问题相关的有意义的子网络和连接模式。通常,属于同一模块的ROIs密集且强烈相互连接,而模块之间的连接稀疏。这种模块化结构以一种被认为促进功能分离和专门信息处理簇的方式约束了网络中的信息流。结构脑网络中流行的社区检测方法包括Louvain算法和随机块模型,尽管确定这些和其他方法使用的最佳实践仍然是一个活跃的研究主题。
在全局尺度上,图论测量可以用来描述大脑的结构布线如何支持远距离ROIs和认知系统之间的信息通信。虽然结构连接的区域可以直接通信,但未连接ROIs之间的信号传播需要一个或多个中间连接序列来实现通信。网络通信的图论测量假设结构连接的强度反映了纤维束支持快速可靠的电信号传播的能力。例如,具有大NOS(流线数量)、高整合FA或短平均流线长度的连接通常被认为支持高效的网络通信。传统上,连接组通信使用基于神经信息通过拓扑最短路径传输这一概念的图论测量来量化。基于最短路径的测量包括流行的特征路径长度和网络效率。然而,从算法上讲,最短路径的识别要求个别区域具有结构连接的全局知识,这一要求在大脑这样的去中心化系统中不太可能满足。此外,已知连接组网络在布线最小化(最短路径)和具有相似连接特征的脑区之间形成连接(同质性)之间取得平衡。
鉴于这些不足,最近的工作开始关注连接组通信的替代模型,如网络扩散、线性传输模型和导航。确定哪些方法最准确地反映潜在生物学过程仍然是一个关键的开放性问题。尽管如此,最近的工作表明,高级通信测量可以阐明结构连接的组织如何塑造大脑的功能动态。例如,尽管dMRI纤维束追踪在解析轴突纤维方向性方面存在固有限制,但在无向人类连接组上计算的图论测量可以揭示不对称通信的模式,这通过与使用动态因果建模计算的有效连接方向性的显著关联得到证实。因此,高级通信测量的使用使得能够从用dMRI映射的结构连接中研究方向性和不对称的功能相互作用。
6.定量纤维束追踪分析的应用
在过去二十年中,提供纤维束定量测量的现代基于dMRI的纤维束追踪扩展了神经解剖学方法,并成为在广泛应用中研究大脑白质的关键技术。在本节中,我们关注几个基本领域,包括发育、衰老、神经系统疾病、精神疾病和神经外科手术。这些研究可以分为两类,对应上述纤维束特异性和基于连接组的分析。第一类涉及主要纤维通路或局部结构连接,以捕捉大脑回路的精细细节。第二类将整个白质视为一个复杂系统,因此采用聚类分析进行特征降维或利用图论分析来量化与信息整合和分离相关的拓扑特征。
6.1. 脑发育纤维束追踪
大脑白质在从神经管发育到复杂连接组的过程中经历高度有序的变化。在过去十年中,研究人员对从中期胎儿到成年的广泛大脑发育阶段实施了弥散磁共振成像(dMRI)纤维束追踪研究。
对于产前阶段,大多数纤维束追踪研究旨在识别神经元迁移路径和大脑关键纤维束的出现作为重要的发育里程碑。例如,通过对胎儿脑样本进行体外dMRI扫描,研究人员能够在13周时识别出穹隆和扣带束的主要纤维束部分,但在15周时才能识别出胼胝体的部分。类似研究还表明,放射状和切向通路组织在17周时最为显著,但在之后的孕周逐渐消失,到足月时所有主要结构通路都已可识别。这些结果与经典组织学研究一致。由于最近在运动校正算法等方法上的进展,胎儿大脑的体内纤维束追踪已经可行,并且与体外和神经解剖学研究高度一致,这表明对未来产前大脑研究具有很大潜力。
在产后阶段,体内纤维束追踪为通过使用定量dMRI指标来描绘重建纤维束的时空成熟模式提供了一个优越的工具,从婴儿期到青春期都有相关研究。尽管这些研究关注不同的发育阶段,但它们都一致观察到在产后生长期间,在横断面和纵向人群设计中,广泛纤维束的FA和MD都显著随年龄增加。研究还描述了主要纤维束在较大发育范围内的几种典型非线性轨迹(分段、指数和二次方程),如从婴儿期到儿童期或从青春期到成年期。研究人员可以通过多变量分析进一步估计子系统水平的纤维束生长;例如,一项研究调查了语言束的成熟日程,发现背侧通路的发育在出生时落后于腹侧通路,但在出生后的头几个月赶上。
使用新兴的发育连接组学框架,研究人员能够探索大脑白质纤维束的布线原理。许多研究发现,在妊娠中期到末期就已经存在类似成人的拓扑结构,包括显著的小世界、模块化和富人俱乐部组织,这表明整个大脑纤维束网络在足月时已经具有高效性和专门化。在产前发育过程中,整个网络变得越来越高效和分隔,具有典型的系统级优化,如小世界性增加和模块性增加。从出生到成年,大脑网络重塑以提高整合能力,伴随着模块性降低和小世界性降低的重构。就区域变化而言,尽管新生儿大脑已经显示出与成人大脑相似的结构枢纽分布,但每个节点的拓扑作用都发生了许多优化。省级枢纽的节点效率和模块内连接的强度在产前阶段发展迅速,枢纽在足月龄扩展到下额叶和岛叶区域。出生后,左前扣带回和左上枕叶在幼儿大脑中成为枢纽。楔前叶和楔叶的中心性在青春期前仍在增加。
上述纤维束相关变化的解释很大程度上取决于发育过程中相应的生物学变化。在胎儿大脑中,这可能是由髓鞘形成前期如少突胶质细胞和祖细胞(形成髓鞘鞘的胶质细胞)的增殖和成熟引起的。在早期产后阶段,持续的髓鞘形成是一个明确的原因,而轴突致密化和水含量减少也可能有贡献。在后期儿童期和青春期,结果似乎可归因于神经突密度的变化,特别是轴突致密化。
6.2. 大脑的衰老和生命周期纤维束追踪
衰老与轴突密度和轴突结构的广泛改变有关。研究人员已经进行了许多纤维束追踪研究,以追踪从儿童期到老年跨越广泛年龄范围的正常衰老模式和生命周期轨迹。
早期纤维束追踪研究通常估计衰老对特定纤维束的影响,如胼胝体、钩状束和穹隆,这些研究显示出一致的变化,包括FA降低、MD增加和纤维束体积减少。通过横向或纵向细分某些纤维束,研究人员能够描绘纤维束内的精细衰老模式。例如,在22-84岁的参与者中,胼胝体的FA值仅在膝部随年龄下降,而在体部和压部则没有变化。使用各种纤维束识别方法,许多研究调查了广泛的纤维束,揭示了大脑系统中典型的空间退化模式,其中前额叶联合纤维束最易受衰老影响,而扣带回、颞叶和顶枕叶联合连接相对保存。从生命周期的角度来看,尽管大多数纤维束在儿童期和青春期FA增加,在老年时FA降低,但FA达到最高峰的年龄在不同的白质纤维束之间有所不同。一般来说,纤维束的前部和后部比中央部分更早达到峰值,大约在20至40岁之间,支持经典的"后进先出"理论。最近,随着成人影像数据集数量的增加和自动化纤维束识别管道的发展,研究人员已经开始通过数千名参与者来评估衰老对大脑纤维束的影响,这使我们进入了前所未有的"大数据"时代。
从连接组学的角度来看,纤维束追踪研究表明,大脑结构网络的基本布局在老年之前基本保持不变,如经济型小世界特征、模块化组织和富人俱乐部组织。同时,大脑结构拓扑随着衰老发生全局和局部改变,包括网络效率下降和模块间/内强度下降,这可能是由于全脑纤维束的广泛退化和前额叶枢纽的丧失(这可能是由易受影响的前额叶纤维束驱动的)。这些基于纤维束追踪的网络变化可能为个性化认知提供潜在的影像标记。作为有力的证据,最近一项大样本研究表明,人类结构连接组变异的全局维度与年龄相关的认知衰退有关。连接组的生命周期变化也与认知成熟显示出良好的一致性。例如,遵循倒U形轨迹,网络效率和小世界测量的峰值年龄(30岁)落在一般认知表现峰值年龄范围内,而默认模式网络内的脑区(广泛参与高级认知)显示最晚的成熟峰值年龄。
这些各种与纤维束相关的变化可能归因于老年时期不同的生理性大脑变化。例如,轴突密度降低和纤维丢失可能导致FA值下降,而伴随健康萎缩的水含量增加可能导致MD增加。使用先进扩散模型(NODDI)的研究结果表明,年龄相关的FA下降主要是由神经突密度下降而不是纤维束复杂性变化引起的。通过多模态dMRI和PET成像分析,研究人员进一步解释了大脑纤维束追踪中与衰老相关变化的代谢机制,他们发现大脑区域间整体连接组效率-代谢耦合随年龄显著增加。
6.3. 神经和精神脑疾病中的纤维束追踪
扩散磁共振成像(dMRI)纤维束追踪已成为研究各种脑部疾病的不可或缺的工具,这些疾病包括但不限于:多发性硬化(MS)、遗忘型轻度认知障碍(aMCI)、阿尔茨海默病、中风、精神分裂症、抑郁症、强迫症(OCD)、注意力缺陷多动障碍(ADHD)和自闭症。在本节中,我们将使用两种典型疾病——多发性硬化和精神分裂症作为示例来浓缩说明,因为在研究这些疾病时使用的方法代表了跨越多种疾病研究工作的广度。与传统的基于体素的分析相比,定量纤维束追踪不仅提供了一个不可替代的工具来准确量化活体纤维束局部轨迹的异常情况,还提供了一个独特的机会在网络层面研究脑部疾病。
6.3.1 多发性硬化
多发性硬化是一种伴有多个局灶性白质病变的脱髓鞘疾病。对MS患者来说,准确量化特定纤维束的损伤特别重要,因为研究发现病变的位置和周围损伤比病变的数量和体积更具影响力。准确定位受影响的纤维束对理解症状学、疾病演变和干预效果也至关重要。然而,传统的基于体素的脑白质分析通常在标准空间中进行,对配准误差较为敏感。因此,在原始空间中进行纤维束追踪更适合MS患者,因为它不需要配准,并且允许纤维束位置和形状的个体间差异。
由于MS的病理性病变会阻碍基本的纤维束重建,临床研究经常采用先进的纤维束追踪方法来重建个体纤维束流线,即使在存在脑部病变的情况下也能获得可行的结果。在分割出感兴趣的纤维束后,可以在纤维束内估计特定的dMRI指标。MS的纤维束追踪研究发现,特定纤维束(如皮质脊髓束、胼胝体和小脑脚)中FA值降低或MD值增加与个体运动障碍相关,且这些纤维束在患者中的扩散指标的纵向变化与训练期间的运动功能康复相关。重要的是,MS的定量纤维束追踪分析进一步强调,外观正常的白质纤维束在病理上也受到影响,可能受到铁或髓鞘等不同病理因素的影响。在这些纤维束中发现的FA异常与疾病早期儿科患者的认知能力显著相关。这些基于个体纤维束的定量指标在早期临床试验中也很有前景。例如,研究人员可以使用这种方法来研究相关白质纤维束内的特定康复干预。通过结合沿纤维束分析和皮层内测量,研究人员进一步发现,虽然MS的白质纤维束异常与皮层内损伤同时存在,但这种关系并不严格遵循特定的纤维束-皮层模式。
由于观察到的大量病变,MS被认为是一种典型的断连综合征。研究人员观察到MS患者与健康对照相比存在一致的网络整合障碍,包括全局效率和网络强度的降低、负责远程通信的远程连接的破坏、代表并行通信能力的额叶网络通信能力下降,以及作为核心通路的富集俱乐部连接的损害。同时,研究发现在首次临床事件后6个12个月出现聚类和模块连接模式增加,这表明存在与疾病相关的网络分离能力异常。研究这些MS中的拓扑网络异常有助于在个体水平上追踪高级行为障碍和复杂的疾病状态。结构网络的破坏与认知表现受损相关,特别是涉及注意力和执行功能。全局效率的降低与扩展残疾状态量表(EDSS)评分和疾病持续时间显著相关。研究人员进一步使用网络指标来区分MS的临床亚型,并取得了很好的准确性。
6.3.2. 精神分裂症
自19世纪末以来,精神分裂症就被认为是一种具有复杂性质的连接障碍疾病。现代纤维束追踪技术为这一假说提供了活体证据,表明精神分裂症可以从皮层区域之间受影响的通路来理解。例如,精神分裂症患者的胼胝体在解剖学分区上表现出FA值降低的损伤。这些损伤在不同研究中都得到了重现,并且在多个数据集中都能预测健康人和患者的多个认知领域的表现。
关于精神分裂症的一个普遍问题是:它是一种全脑功能障碍,还是选择性地影响某些神经系统的疾病。研究经常发现在慢性和首发精神分裂症患者的额颞系统纤维束中FA值一致降低,如上/下纵束、钩状束、弓状束和扣带束。这些特定纤维束的损伤与工作记忆缺陷、幻觉和注意力等症状显著相关。然而,越来越多的证据表明,精神分裂症中纤维束的损伤范围比传统认为的额颞区更广泛,这强调了进行全脑研究的必要性。有证据表明,与基于体素的分析方法相比,纤维束追踪分析在检测精神分裂症白质损伤方面显示出更高的特异性和敏感性。同时,通过将全脑纤维通路的沿束分析(这是无法通过基于体素的分析获得的)与无监督聚类框架相结合,研究人员能够识别出生物学定义的精神分裂症亚型,而不是基于症状的划分,这为未来研究展现了巨大潜力。
使用图论框架的结构连接组研究显示,与健康对照组相比,慢性或首发患者、未受影响的兄弟姐妹和高危婴儿的全局网络拓扑结构发生了改变,如网络效率降低和特征路径长度增加。这些结果支持受损的网络整合可能是精神分裂症病因的基础,并可能反映遗传易感性。同时,在患者及其未受影响的兄弟姐妹中观察到的远距离关联边的不成比例缺陷、解剖脑枢纽和富集俱乐部连接的破坏,也表明精神分裂症中功能整合的拓扑基础设施受到损害。研究还发现精神分裂症患者和高危综合征个体的网络分离异常增强的证据,如模块性增加。
这些网络拓扑的缺陷通常与疾病期间的认知障碍和治疗反应相关。患者的全局效率降低与阳性和阴性症状量表(PANSS)评分相关,而与非应答者相比,后续对治疗有反应的首发患者倾向于表现出更高的全局效率。富集俱乐部组织的破坏也与PANSS评分相关,并显示出区分精神分裂症患者和健康对照的潜力。基于纤维束追踪的网络也是进行跨物种病理机制比较的有价值框架;例如,通过比较人类和黑猩猩的脑网络连接,研究人员发现人类白质连接的进化修饰与精神分裂症相关的连接障碍的皮层模式存在显著重叠。
6.4. 神经外科中的纤维束追踪
对神经外科医生来说,纤维束追踪对手术的规划和实施极其重要,它能够可视化和定位被肿瘤位移或影响的白质纤维束。虽然仍存在一些技术方面的考虑,但体内纤维束追踪为病变切除和深部脑刺激(DBS)等领域的脑部手术规划和实施提供了关于个体解剖通路的重要空间信息(尽管局部纤维束的定量指标在临床护理中使用相对较少)。
在肿瘤切除手术中,纤维束追踪,尤其是在术中磁共振成像中,可以准确显示和定位被肿瘤位移或影响的白质纤维束,这对神经外科患者的生活质量和总体生存至关重要。在肿瘤性病变手术中,平衡功能保护和最大程度切除之间的权衡非常重要。传统的金标准是通过直接电刺激(DES)术中识别重要功能区。最近使用术中磁共振成像的活体纤维束追踪显示,重建纤维束的距离与阳性DES强度之间存在相对较高的相关性。使用术中磁共振成像也显示能提供更全面的手术白质图谱,识别出术前纤维束追踪未发现的纤维束。研究表明,当与导航经颅磁刺激(nTMS)结合时,术中纤维束追踪有助于为上纵束附近肿瘤的患者保护语言功能。此外,在语言区手术中,当清醒手术无法进行时,基于纤维束追踪的评估可能成为评估相关白质纤维束的唯一可用方案。体内纤维束追踪已广泛应用于位于幕上和幕下区域的各种病变,不仅涉及主要纤维束,还包括较小的纤维结构。
在精神外科手术中,纤维束追踪结果用于改善难治性精神疾病(如抑郁症、强迫症或创伤后应激障碍)患者的DBS手术定位。例如,腹侧被盖区投射通路(VTApp)是精神科DBS中许多转化性病例的潜在刺激靶点,在标准结构磁共振成像上无法显示。体内纤维束追踪可用于通过可视化纤维流线来优化侵入深度和轨迹,从而最大化刺激电极与VTApp的接触。这种DBS方法在几个开放标签试验中迅速改善临床反应和缓解,虽然还需要通过大型随机试验进一步研究。类似的努力也应用于临床实践中的主要靶点,包括胼胝体下扣带回(SCC)和腹侧囊/腹侧纹状体(VC/VS)。
脑连接组的概念通过从关注局部地形转向网络引导的"肿瘤断连手术"使传统手术策略受益。在经典的神经外科观点中,由感觉运动、语言和视觉皮层代表的"重要"脑区的固定定义作为一个不可辩驳的原则:涉及"重要"皮层的肿瘤不会被选择切除,而位于"非重要"区域的肿瘤可以在不考虑的情况下进行手术。然而,考虑到功能代偿的潜力和个体差异的存在,患者之间"重要"区域的共同位置似乎并不准确。通过将纤维束追踪图谱与术中电刺激功能映射相结合,研究人员构建了白质通路和结构枢纽的概率图谱,这些图谱定义了一个具有低个体间变异性和低术后损伤代偿潜力的最小共同脑连接组。
这种先验的"结构和功能骨架"提供了关于重要脑亚网络的全脑知识图谱,这可能有助于指导肿瘤手术期间某些神经环路的切除。例如,连接组研究表明,词汇访问速度(与低级别胶质瘤患者清醒手术后重返工作岗位相关)只有在左下纵束(ILF)受损时才会完全中断。精细的手术管理现在可以考虑到受肿瘤/病变影响的功能重构相关的白质环路。研究人员还试图使用基于纤维束追踪结果的脑功能模拟来开发病变手术的"连接组风险特征"。
在精神外科手术中,先进的纤维束追踪促进了脑连接组分析与神经调节干预的结合,这推动了"连接组DBS"概念的出现。这种模拟方法旨在调节最佳互连网络,而不是针对局部位点。它可能部分减少关于最佳干预靶点的模糊性,并且非常适用于涉及多个异常环路的脑部疾病,如强迫症。此外,连接组神经调节可能有助于识别导致特异性症状治疗的特定网络,为个性化治疗铺平道路。例如,在帕金森病中,研究人员发现与辅助运动区相连的丘脑下核DBS与运动迟缓和僵直的改善相关,而与M1结构相连的核DBS与震颤的改善相关。这些研究表明,未来可能使用个体定量纤维束追踪在脑系统水平上生成神经外科预后标志物。
7.讨论和结论
本文中,我们高度概述了如何利用纤维束追踪来实现对健康和疾病状态下大脑结构连接的定量分析。我们回顾了纤维束追踪定量分析主要处理步骤中涉及的方法,也回顾了使用定量纤维束追踪来研究大脑白质的相关研究。
对于使用纤维束追踪的研究和临床应用,我们注意到研究人员在对定量结果进行生物学解释时应该格外谨慎。重建的流线只是模拟的实体,并不直接对应于神经纤维,基本的扩散指标也只是基于局部扩散特性的推断,而不是组织特性的直接测量。多篇综述文章阐述了在进行定量扩散磁共振成像分析和使用纤维束追踪研究大脑连接时需要避免的陷阱。目前正在进行研究来提高对组织变化类型的生物学特异性,方法包括改进采集层面获得的信息,以及提出先进的数学建模和机器学习技术。
纤维束追踪的解剖学准确性是定量纤维束追踪分析中一个持续的问题,假阳性和假阴性的纤维束追踪结果都带来了挑战。虽然技术改进(例如使用第3.5节介绍的纤维过滤技术)可以提高解剖学准确性,但研究人员在解释研究和临床应用的结果时应该谨慎,需要考虑从组织学和动物研究中获得的先验解剖学知识。
纤维束追踪使得研究健康和疾病状态下全生命周期的大脑白质连接成为可能。总的来说,我们的结论是,尽管在方法技术和应用范围方面取得了重大进展,但在纤维束追踪的定量分析中仍然没有关于"最佳"方法的共识,研究人员在解释研究和临床应用的结果时应该保持谨慎。
原文:Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review