【PID控制】simulink强化学习的自适应PID控制器仿真【含Matlab源码 7233期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab优化求解仿真内容点击👇
Matlab优化求解 (进阶版)
付费专栏Matlab优化求解(初级版)

⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
在这里插入图片描述
在这里插入图片描述

⛄一、simulink强化学习的自适应PID控制器仿真

Simulink是一种强大的系统建模和仿真环境,在强化学习(RL)背景下,可以用来设计和实施自适应PID控制器。其基本原理如下:

(1)模型构建:首先,你会创建一个包含PID控制器模块、环境模型以及强化学习算法模块的Simulink模型。PID控制器负责实时调整系统的控制输入,如速度、位置等。

(2)环境模型:这个部分模拟真实世界的过程,比如机械系统的行为。PID控制器的输出会作用于环境,产生可观测的状态变化和反馈信号。

(3)强化学习:利用强化学习算法(如Q-learning或Deep Q-Networks),智能体(即PID控制器)通过不断尝试并接收来自环境的奖励或惩罚来学习最优化的动作策略。在这个过程中,状态-动作对会被记录下来作为经验池。

(4)适应性学习:自适应PID控制器通常会结合在线学习技术,如模型参考学习(MPC)或神经网络PID,它会根据实际运行情况自动调整PID参数,例如比例增益Kp、积分增益Ki和微分增益Kd。

(5)仿真与迭代:启动仿真,智能体执行动作,收到环境反馈,更新其策略,并可能改变控制器参数。整个过程是一个迭代的学习过程,直到达到预设的目标性能或满足某个停止条件。

⛄二、部分源代码和运行步骤

1 部分代码
clc;
clear;
close all;
warning off;

load pid.mat
t1 = ans.Time;
d1 = ans.Data;

load RLpid.mat
t2 = ans.Time;
d2 = ans.Data;

figure;
plot(t1,d1,‘b’);
hold on
plot(t2,d2,‘r’);
legend(‘PID’,‘强化学习PID’);

2 通用运行步骤
(1)直接运行main.m即可一键出图

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]董如意,唐玉玉,桑可可.基于改进粒子群算法的PID控制器参数整定优化[J].吉林化工学院学报. 2022,39(07)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

Fuzzysimulink有关模糊PID问题概述-自适应模糊PID.rar 最近很多人问我关于模糊PID的问题,我就把模糊PID的问题综合了一下,希望对大家有所帮助。 一、模糊PID就是指自适应模糊PID吗? 不是,通常模糊控制和PID控制结合的方式有以下几种: 1、大误差范围内采用模糊控制,小误差范围内转换成PID控制的模糊PID开关切换控制。 2、PID控制与模糊控制并联而成的混合型模糊PID控制。 3、利用模糊控制在线整定PID控制参数的自适应模糊PID控制。 一般用1和3比较多,MATLAB自带的水箱液位控制tank采用的就是开关切换控制。由于自适应模糊PID控制效果更加良好,而且大多数人选用自适应模糊PID控制,所以在这主要指自适应模糊PID控制。 二、自适应模糊PID的概念 根据PID控制的三个参数与偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制的三个参数,让PID参数可自整定。就我的理解而言,它最终还是一个PID控制,但是因为参数可自动调整的缘故,所以也能解决不少一般的非线性问题,但是假如系统的非线性、不确定性很严重时,那模糊PID的控制效果就会不理想啦。 三、模糊PID控制规则是怎么定的? 这个控制规则当然很重要,一般经验: 当e较大时,为使系统具有较好的跟踪性能,应取较大的Kp与较小的Kd,同时为避免系统响应出现较大的超调,应对积分作用加以限制,通常取Ki=0。 当e处于中等大小时,为使系统响应具有较小的超调,Kp应取得小些。在这种情况下,Kd的取值对系统响应的影响较大,Ki的取值要适当。 当e较小时,为使系统具有较好的稳定性能,Kp与Ki均应取得大些,同时为避免系统在设定值附近出现振荡,Kd值的选择根据|ec|值较大时,Kd取较小值,通常Kd为中等大小。 另外主要还得根据系统本身的特性和你自己的经验来整定,当然你先得弄明白PID三个参数Kp,Ki,Kd各自的作用,尤其对于你控制的这个系统。 四、量化因子Ke,Kec,Ku该如何确定? 有个一般的公式:Ke=n/e,Kec=m/ec,Ku=u/l。n,m,l分别为Ke,Kec,Ku的量化等级,一般可取6或7。e,ec,u分别为误差,误差变化率,控制输出的论域。不过通过我实际的调试,有时候这些公式并不好使。所以我一般都采用凑试法,根据你的经验,先确定Ku,这个直接关系着你的输出是发散的还是收敛的。再确定Ke,这个直接关系着输出的稳态误差响应。最后确定Kec,前面两个参数确定好了,这个应该也不会难了。 五、在仿真的时候会出现刚开始仿真的时候时间进度很慢,从e-10次方等等开始,该怎么解决? 这时候肯定会有许多人跳出来说是步长的问题,等你改完步长,能运行了,一看结果,惨不忍睹!我只能说这个情况有可能是你的参数有错误,但如果各项参数是正确的前提下,你可以在方框图面加饱和输出模块或者改变阶跃信号的sample time,让不从0开始或者加个延迟模块或者加零阶保持看看…… 六、仿真到一半的时候仿真不动了是什么原因? 仿真图形很有可能发散了,加个零阶保持,饱和输出模块看看效果。改变Ke,Kec,Ku的参数。 七、仿真图形怎么反了? 把Ku面的参数改变一下符号,比如说从正变为负。模糊PID的话改变Kp的就可以。 八、还有人问我为什么有的自适应模糊PID有相加的模块而有的没有? 相加的是与PID的初值相加。最后出来的各项参数Kp=△Kp Kp0,Ki=△Ki Ki0,Kd=△Kd Kd0。Kp0,Ki0,Kd0分别为PID的初值。有的系统并没有设定PID的初值。 九、我照着论文搭建的,什么都是正确的,为什么最后就是结果不对? 你修改下参数或者重新搭建一遍。哪一点出了点小问题,都有可能导致失败。 …… 大家还有什么问题就在帖子后面留言哈,如果模型实在是搭建不成功的话可以给我看看,大家有问题一起解决!附件面是两个自适应模糊PID的程序,大家可以参考下! 所文件: Figure38.jpg simulink有关模糊PID问题概述 结构图: Figure39.jpg simulink有关模糊PID问题概述 Figure40.jpg simulink有关模糊PID问题概述
模糊自适应PID控制是一种基于模糊控制和PID控制相结合的控制方法,通过模糊控制的模糊规则和PID控制的参数优化相结合,实现对控制系统的精确控制。在Simulink中,我们可以通过以下步骤来实现模糊自适应PID控制。 首先,我们需要建立一个模糊自适应PID控制系统的模型。在Simulink中,可以使用各种模块来构建系统的模型,包括输入输出模块、PID控制模块、模糊控制模块等。 其次,我们需要定义控制系统的输入、输出以及需要控制的变量。通过Simulink的输入输出模块,我们可以定义控制系统的输入信号和输出信号,并将其连接到相应的模糊自适应PID控制模块中。 接着,我们需要设置模糊自适应PID控制的参数。在Simulink中,可以通过参数调节模块来设置PID控制的比例系数、微分系数、积分系数等参数,同时,也可以通过模糊控制模块来定义模糊规则和参数。 最后,我们需要对模型进行仿真和调试。通过Simulink仿真功能,可以对模糊自适应PID控制系统进行仿真,并观察系统的响应情况。在仿真过程中,可以通过调节参数和规则来优化控制系统的性能,直至达到满意的控制效果。 总的来说,在Simulink中实现模糊自适应PID控制需要建立模型、定义输入输出、设置参数以及进行仿真调试等步骤,通过这些步骤可以有效实现模糊自适应PID控制系统的设计和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值