在深度学习中,数据加载器(DataLoader)是用来批量加载数据的工具
collate_fn:
数据加载器的一个参数,用于指定如何将单个样本组合成一个批次
当使用数据加载器加载数据时,每个样本被解释为一个元组或字典
在进行训练时,通常需要将一批样本一起输入模型进行处理,以提高计算效率
这就需要将单个样本组合成一个批次
collate_fn
函数的作用就是定义了如何将单个样本组合成一个批次
它接受一个批次的样本列表作为输入,然后可以对每个样本进行处理,将它们组合成一个批次,并返回该批次的数据
在实际应用中,collate_fn
函数的实现方式可以根据具体的任务和数据结构进行定制
例如,可以使用torch.stack
函数将图像数据堆叠成一个张量,使用torch.cat
函数将目标数据拼接成一个张量,或者根据需要进行数据填充、裁剪等操作
通过自定义collate_fn
函数,可以实现满足模型输入要求的数据批次组合方式,从而更好地适应训练需求,并提高数据加载的效率