同步首发!智谱开源GLM-4-0414全部6个模型并上线昇思、魔乐开源社区

4月15日,昇思MindSpore开源社区、魔乐社区第一时间上架智谱全新开源的GLM-4-0414 32B/9B模型,并完成精度测试。智谱GLM-4-0414拥有 32B/9B两个尺寸,涵盖基座、推理、沉思模型,均遵循 MIT 许可协议。其中,推理模型 GLM-Z1-32B-0414 性能媲美 DeepSeek-R1 等顶尖模型,实测推理速度可达 200 Tokens/秒。 

模型介绍:

image.png

基座模型 GLM-4-32B-0414 拥有 320 亿参数,其性能可与国内、外参数量更大的主流模型相媲美。该模型利用 15T 高质量数据进行预训练,特别纳入了丰富的推理类合成数据,为后续的强化学习扩展奠定了基础。在后训练阶段,除了进行面向对话场景的人类偏好对齐,还通过拒绝采样和强化学习等技术,重点增强了模型在指令遵循、工程代码生成、函数调用等任务上的表现,以强化智能体任务所需的原子能力。

GLM-4-32B-0414 在工程代码、Artifacts生成、函数调用、搜索问答及报告撰写等任务上均表现出色,部分 Benchmark 指标已接近甚至超越GPT-4o、DeepSeek-V3-0324(671B)等更大模型的水平。

image.png

GLM-Z1-32B-0414 是一款具备深度思考能力的推理模型。该模型在 GLM-4-32B-0414 的基础上,采用了冷启动与扩展强化学习策略,并针对数学、代码、逻辑等关键任务进行了深度优化训练。与基础模型相比,GLM-Z1-32B-0414 的数理能力和复杂问题解决能力得到显著增强。此外,训练中整合了基于对战排序反馈的通用强化学习技术,有效提升了模型的通用能力。

在部分任务上,GLM-Z1-32B-0414 凭借 32B 参数,其性能已能与拥有 671B 参数的 DeepSeek-R1 相媲美。通过在 AIME 24/25、LiveCodeBench、GPQA 等基准测试中的评估,GLM-Z1-32B-0414 展现了较强的数理推理能力,能够支持解决更广泛复杂任务。

image.png

GLM-Z1-9B-0414是沿用了上述一系列技术,训练出的一个 9B 的小尺寸模型。虽然参数量更少,但GLM-Z1-9B-0414 在数学推理及通用任务上依然表现出色,整体性能已跻身同尺寸开源模型的领先水平。特别是在资源受限的场景下,该模型可以很好地在效率与效果之间取得平衡,为需要轻量化部署的用户提供强有力的选择。

image.png

沉思模型GLM-Z1-Rumination-32B-0414代表了智谱对 AGI 未来形态的下一步探索。与一般推理模型不同,沉思模型通过更多步骤的深度思考来解决高度开放与复杂的问题。其关键创新在于,它能在深度思考过程中整合搜索工具处理复杂任务,并运用多种规则型奖励机制来指导和扩展端到端的强化学习训练。该模型支持“自主提出问题—搜索信息—构建分析—完成任务”的完整研究闭环,从而在研究型写作复杂检索任务上的能力得到了显著提升。

欢迎广大开发者下载体验!

魔乐社区模型下载链接:

  • https://modelers.cn/models/MindSpore-Lab/GLM-4-32B-Base-0414

  • https://modelers.cn/models/MindSpore-Lab/GLM-Z1-Rumination-32B-0414

  • https://modelers.cn/models/MindSpore-Lab/GLM-Z1-32B-0414

  • https://modelers.cn/models/MindSpore-Lab/GLM-Z1-9B-0414

  • https://modelers.cn/models/MindSpore-Lab/GLM-4-32B-0414

  • https://modelers.cn/models/MindSpore-Lab/GLM-4-9B-0414

以下为手把手教程:(以GLM-Z1-9B-0414+昇思MindSpore基于昇腾推理为例)

# 01快速开始

GLM-Z1-9B-0414推理至少需要1台(1卡)Atlas 800T A2(64G)服务器服务器(基于BF16权重)。昇思MindSpore提供了GLM-Z1-9B-0414推理可用的Docker容器镜像,供开发者快速体验。

1

下载昇思MindSpore推理容器镜像

执行以下 Shell 命令,拉取昇思 MindSpore GLM-Z1 推理容器镜像:

docker pull swr.cn-central-221.ovaijisuan.com/mindformers/mindspore_glm_z1:20250414复制

2

启动容器

执行以下命令创建并启动容器:

docker run -it --privileged  --name=GLM-Z1 --net=host \
   --shm-size 500g \
   --device=/dev/davinci0 \
   --device=/dev/davinci1 \
   --device=/dev/davinci2 \
   --device=/dev/davinci3 \
   --device=/dev/davinci4 \
   --device=/dev/davinci5 \
   --device=/dev/davinci6 \
   --device=/dev/davinci7 \
   --device=/dev/davinci_manager \
   --device=/dev/hisi_hdc \
   --device /dev/devmm_svm \
   -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
   -v /usr/local/Ascend/firmware:/usr/local/Ascend/firmware \
   -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \
   -v /usr/local/sbin:/usr/local/sbin \
   -v /etc/hccn.conf:/etc/hccn.conf \
   swr.cn-central-221.ovaijisuan.com/mindformers/mindspore_glm_z1:20250414
   /bin/bash复制

注意事项:

  • 如果部署在多机上,每台机器中容器的hostname不能重复。如果有部分宿主机的hostname是一致的,需要在起容器的时候修改容器的hostname。

  • 后续所有操作均在容器内操作。

3

模型下载

执行以下命令为自定义下载路径 /home/work/GLM-Z1-9B-0414 添加白名单:

export HUB_WHITE_LIST_PATHS=/home/work/GLM-Z1-9B-0414复制

执行以下 Python 脚本从魔乐社区下载昇思 MindSpore 版本的 GLM-Z1-9B-0414 文件至指定路径 /home/work/GLM-Z1-9B-0414 。下载的文件包含模型代码、权重、分词模型和示例代码,占用约18GB 的磁盘空间:

from openmind_hub import snapshot_download
snapshot_download(
    repo_id="MindSpore-Lab/GLM-Z1-9B-0414",
    local_dir="/home/work/GLM-Z1-9B-0414",
    local_dir_use_symlink=False
)复制

下载完成的 /home/work/GLM-Z1-9B-0414 文件夹目录结构如下:


GLM-Z1-9B-0414
  ├── config.json                               # 模型json配置文件
  ├── tokenizer.model                           # 词表model文件
  ├── tokenizer_config.json                     # 词表配置文件
  ├── predict_glm4_z1_9b.yaml                   # 模型yaml配置文件
  └── weights
        ├── model-xxxxx-of-xxxxx.safetensors    # 模型权重文件
        ├── tokenizer.json                      # 模型词表文件
        ├── xxxxx                               # 若干其他文件
        └── model.safetensors.index.json        # 模型权重映射文件复制

注意事项:

  • /home/work/GLM-Z1-9B-0414 可修改为自定义路径,确保该路径有足够的磁盘空间(约 18GB)。

  • 下载时间可能因网络环境而异,建议在稳定的网络环境下操作。

# 02服务化部署

1

修改模型配置文件

在 predict_glm4_z1_9b.yaml 中对以下配置进行修改(若为默认路径则无需修改):


load_checkpoint: '/home/work/GLM-Z1-9B-0414/weights'         # 配置为实际的模型绝对路径
auto_trans_ckpt: True                                  # 打开权重自动切分,自动将权重转换为分布式任务所需的形式
load_ckpt_format: 'safetensors'
processor:
  tokenizer:
    vocab_file: "/home/work/GLM-Z1-9B-0414/tokenizer.model"  # 配置为tokenizer文件的绝对路径复制

2

一键启动MindIE

MindSpore Transformers提供了一键拉起MindIE脚本,脚本中已预置环境变量设置和服务化配置,仅需输入模型文件目录后即可快速拉起服务。
进入 mindformers/scripts 目录下,执行MindIE启动脚本:

cd /home/work/mindformers/scripts
bash run_mindie.sh --model-name GLM-Z1-9B-0414 --model-path /home/work/GLM-Z1-9B-0414 --max-prefill-batch-size 1复制

参数说明:

  • --model-name:设置模型名称

  • --model-path:设置模型目录路径

查看日志:

tail -f output.log复制

当log日志中出现 `Daemon start success!` ,表示服务启动成功。

3
执行推理请求测试

执行以下命令发送流式推理请求进行测试:

curl -w "\ntime_total=%{time_total}\n" -H "Accept: application/json" -H "Content-type: application/json" -X POST -d '{"inputs": "请介绍一个北京的景点", "parameters": {"do_sample": false, "max_new_tokens": 128}, "stream": false}' http://127.0.0.1:1025/generate_stream &

# 03声明

本文档提供的模型代码、权重文件和部署镜像,当前仅限于基于昇思MindSpore AI框架体验 GLM-Z1-9B-0414 的部署效果,不支持生产环境部署。

相关使用问题请反馈至ISSUE(链接:https://gitee.com/mindspore/mindformers/issues)。

昇思MindSpore AI框架将持续支持相关主流模型演进,并根据开源情况面向全体开发者提供镜像与支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值