深度学习(2)-反卷积(deconvolution)

反卷积,又称转置卷积,是卷积神经网络中的一个重要概念,常用于图像上采样。它与卷积运算互为逆过程,通过特定的padding和stride设置来恢复或放大图像尺寸。当padding为0,反卷积的padding需要为k-1(k为卷积核大小),以保持与卷积的对应关系。对于非单位步长(stride≠1)的情况,反卷积会先进行0填充,然后进行卷积操作,这种过程也称为fractionally strided convolutions。理解并正确应用反卷积是深度学习中图像处理的关键。
摘要由CSDN通过智能技术生成

反卷积在论文中常常对应的英文有:

  • Deconvolution (怪怪的“去卷积”)
  • Upconvolution
  • Fractionally strided
    convolution
  • Backward strided
    convolution

意思是它的卷积的逆过程。它的另一个名字转置卷积(transpose convolution)更能表达它的数学过程。比如对4x4的图像进行3x3的卷积得到2x2的图像,可表示为矩阵乘法y=Cx:
这里写图片描述
表达将4x1的向量转化为16x1的向量。而反卷积相当于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值