计算机视觉 Computer Vision, CV
计算机视觉的子任务分为:图像分类(Image Classification)、目标检测(Object Detection)、语义分割(Semantic Segmentation)、实例分割(Instance Segmentation);
各子任务是一个不断深入的过程,其目标分别为:
- 图像分类:目的是判断每张图像包含什么物体(即 类别),相对简单,也是其他子任务的基础;
- 目标检测:输入图像中往往有很多物体,目的是判断出物体出现的 位置 与 类别;
- 语义分割:除了 位置 与 类别 外,还需要标注出物体的 外形轮廓,即需要判断出每一个像素属于哪一个类别;
- 实例分割:语义分割将同一类物体标为一个整体,实例分割注重于分辨出 每一个个体的轮廓,区别见附图。
语义分割与实例分割在处理对象上并不完全相同,语义分割面向画面中的每个像素,实例分割面向画面中的每个对象实例,实例分割并不会标注背景类别。
2019年提出了 全景分割(Panoptic Segmentation) 的概念,统一了语义分割和实例分割的不同任务,三者的区别见图: