第二章 矩阵
文章目录
第一节 矩阵概念
1.矩阵概念的引入
矩阵概念的引入跟行列式一样是从多元一次方程组引入的,但是行列式相比,它还是有许多的不同点。
2.矩阵与行列式的不同之处
- 矩阵是数表,而行列式表示的就是一个数字。可以这样理解:矩阵所承载的信息是只能通过一大数字来表现,而行列式表面上是通过一堆数字,但实际上就是一个数字。由此可见,矩阵的信息跟丰富也跟多,所以一般在科学研究上我们多用矩阵与向量来承载信息。
- 矩阵的m,n可以不相同,而行列式的必须相同。
第二节 矩阵的线性运算、乘法以及转置运算
一.矩阵加法
矩阵相加减====元素各自相加减
二.数与矩阵相乘
一个数字与矩阵相乘====用这个数字分别与矩阵元素相乘
三.矩阵相乘
-
前提:m*n的矩阵只能与n j的矩阵相乘(第一个的列与第二个的行相等)
-
矩阵与矩阵相乘====一行对应多个列相乘,直到乘完
-
如果我们有线性运算:
y = w x + b y=wx+b y=wx+b
这是对于单个数字的,如果换为矩阵形式、向量形式; Y=WX+b
其中:W叫做系数矩阵
注意:
- 矩阵与矩阵相乘、数与矩阵相乘都满足分配律和结合律
- 矩阵与矩阵相乘不满足交换律,数与矩阵相乘满足
四.转置矩阵
1.偶次转置不变性:
(
A
T
)
T
=
A
(A^T)^T=A
(AT)T=A
2.相加转置分配性:
(
A
+
B
)
T
=
A
T
+
B
T
(A+B)^T=A^T+B^T
(A+B)T=AT+BT
3.常数转置无效性:
(
k
A
)
T
=
k
A
T
(kA)^T=kA^T
(kA)T=kAT
4.相乘转置分配性:
(
A
1
A
2
.
.
.
A
n
)
T
=
A
1
T
A
2
T
.
.
.
A
n
T
(A_1A_2...A_n)^T=A_1^TA_2^T...A_n^T
(A1A2...An)T=A1TA2T...AnT
5.(反)对称矩阵:
A
T
=
(
−
)
A
A^T=(-)A
AT=(−)A
五.矩阵的行列式(|A|、detA)
1.转置不变性:
∣
A
T
∣
=
∣
A
∣
T
=
∣
A
∣
|A^T|=|A|^T=|A|
∣AT∣=∣A∣T=∣A∣
2.常数相乘分配性:
∣
k
A
∣
=
k
n
∣
A
∣
|kA|=k^n|A|
∣kA∣=kn∣A∣
3.相乘取行分配性:
∣
A
1
A
2
.
.
.
A
n
∣
=
∣
A
1
∣
∣
A
2
∣
.
.
.
∣
A
n
∣
|A_1A_2...A_n|=|A_1||A_2|...|A_n|
∣A1A2...An∣=∣A1∣∣A2∣...∣An∣
第三节 逆矩阵
一.定义
设A是n阶方阵,对于另一个n阶方阵,如果:
A
B
=
B
A
=
E
AB=BA=E
AB=BA=E
我们就称A可逆,B是A的逆矩阵,记为:
B
=
A
−
1
A
A
−
1
=
A
−
1
A
=
E
B=A^{-1}\\ AA^{-1}=A^{-1}A=E
B=A−1AA−1=A−1A=E
二.伴随矩阵
对于一个矩阵A的元素为a_ij,记a_ij的代数余子式为A_ij,那么:
A
∗
=
{
A
11
A
21
.
.
.
A
n
1
A
12
A
22
.
.
.
A
n
1
.
.
.
.
.
.
A
1
n
A
2
n
.
.
.
A
n
n
}
A^{*}= \left\{ \begin{matrix} A_{11}&A_{21}&...A_{n1}\\ A_{12}&A_{22}&...A_{n1}\\ ......\\ A_{1n}&A_{2n}&...A_{nn} \end{matrix} \right\}
A∗=⎩⎪⎪⎨⎪⎪⎧A11A12......A1nA21A22A2n...An1...An1...Ann⎭⎪⎪⎬⎪⎪⎫
为A的伴随矩阵。
对于A的伴随矩阵和可逆矩阵,有:
A
A
∗
=
∣
A
∣
A
−
1
=
A
∗
∣
A
∣
AA^{*}=|A|\\ A^{-1}=\frac{A^*}{|A|}
AA∗=∣A∣A−1=∣A∣A∗
三.用逆矩阵求解线性方程组
A X = B X = A − 1 B AX=B\\ X=A^{-1}B AX=BX=A−1B
四.可逆矩阵的性质
1.偶次可逆不变性:
(
A
−
1
)
−
1
=
A
(A^{-1})^{-1}=A
(A−1)−1=A
2.常值可逆规则:
(
k
A
)
−
1
=
1
k
A
−
1
(kA)^{-1}=\frac{1}{k}A^{-1}
(kA)−1=k1A−1
3.矩阵运算不分先后性:
(
A
T
)
−
1
=
(
A
−
1
)
T
(A^T)^{-1}=(A^{-1})^T
(AT)−1=(A−1)T
4.相乘可逆分配性:
(
A
B
)
−
1
=
B
−
1
A
−
1
(AB)^{-1}=B^{-1}A^{-1}
(AB)−1=B−1A−1
5.可逆矩阵取行分配性:(跟三类似)
∣
A
−
1
∣
=
1
∣
A
∣
|A^{-1}|=\frac{1}{|A|}
∣A−1∣=∣A∣1
注意:没有相加可逆分配性;到目前我们已知的矩阵形式变换运算:取行、可逆、转置
第四节 分块矩阵
一.定义
顾名思义,就是将原来的大矩阵分为多个小矩阵(子矩阵、子块),从而达到简便运算的效果(因为通过分块过后可能会出现零矩阵、单位矩阵等特殊矩阵)
二.分块矩阵的运算
就是一种逐层的运算,先将子块看作一个个数字,然后再进行内部运算,以此类推。
第五节 矩阵初等变换
一.变换类型(k!=0)
-
换法变换
a i j , a i ( j + 1 ) = a i ( j + 1 ) , a i j a_{ij},a_{i(j+1)}=a_{i(j+1)},a_{ij} aij,ai(j+1)=ai(j+1),aij -
倍法变换
a i j = k a i j a_{ij}=ka_{ij} aij=kaij -
消法变换
a i j = k a i n + a i j a_{ij}=ka_{in}+a_{ij} aij=kain+aij
二.初等矩阵
一切可以由单位矩阵通过初等变换得到的矩阵
- 初等矩阵都是可逆矩阵
- 初等矩阵的逆矩阵仍然是同类型的初等矩阵
三.用矩阵初等变换方法求可逆矩阵
( A ∣ E ) — 行 变 换 — ( E ∣ A − 1 ) (A|E)—^{行变换}—(E|A^{-1}) (A∣E)—行变换—(E∣A−1)
当然也可以
(
A
E
)
—
列
变
换
—
(
E
A
−
1
)
(\frac{A}{E})—^{列变换}—(\frac{E}{A^{-1}})
(EA)—列变换—(A−1E)
第六节 矩阵的秩
一.k阶子式
类似行列式的子式。显然
m
×
n
的
k
阶
子
式
有
C
m
k
C
n
k
m\times n的k阶子式有C_{m}^{k}C_{n}^{k}
m×n的k阶子式有CmkCnk
二.秩
如果一个矩阵A有一个r阶子式!=0,而r+1阶子式全为0,那么我们称r为矩阵A的
秩,记作:
R
(
A
)
R
A
R(A) \quad\quad\quad\quad R_A
R(A)RA
也就是说:秩就是一个矩阵中不等于0的子式的最高阶数。
-
如果矩阵A是m*n阶矩阵,那么:
R ( A ) ≤ m i n { m , n } R(A)\leq min\{m,n\} R(A)≤min{m,n} -
如果一个矩阵的r阶子式不等于0,那么:
R ( A ) ≥ r R(A) \geq r R(A)≥r
如果r阶子式全等于0,那么:
R ( A ) ≤ r R(A)\leq r R(A)≤r -
如果一个矩阵A满足:
R ( A ) = R ( A T ) R(A)=R(A^T) R(A)=R(AT)
那么矩阵A的每一个子式都是转置矩阵中一个子式 -
R ( k A ) = R ( A ) , k ! = 0 R(kA)=R(A),k!=0 R(kA)=R(A),k!=0
-
对于矩阵A,如果R(A)=n,那么A是满秩矩阵;否则为降秩矩阵。
三.一些定理
-
初等变换不改变矩阵的秩
-
设P、Q分别是m、n阶可逆矩阵,则对于任意一个m*n矩阵A而言,
R ( P A Q ) = R ( A ) R(PAQ)=R(A) R(PAQ)=R(A)
四.行阶梯形矩阵
1.行阶梯形矩阵
- 若有零行,零行都在非零行的下面(元素全为0的行叫做零行)
- 从第一行起,下一行自左向右第一个非零元素前面零的个数逐行增加
2.最简形式
首元(每一行从左往右第一个不为0的数字)全为1的阶梯形矩阵。
3.阶梯形矩阵与秩的关系
行阶梯形矩阵的非零行个数即为矩阵的秩。
阵A而言,
R
(
P
A
Q
)
=
R
(
A
)
R(PAQ)=R(A)
R(PAQ)=R(A)
四.行阶梯形矩阵
1.行阶梯形矩阵
- 若有零行,零行都在非零行的下面(元素全为0的行叫做零行)
- 从第一行起,下一行自左向右第一个非零元素前面零的个数逐行增加
2.最简形式
首元(每一行从左往右第一个不为0的数字)全为1的阶梯形矩阵。
3.阶梯形矩阵与秩的关系
行阶梯形矩阵的非零行个数即为矩阵的秩。