第二章 矩阵

第二章 矩阵

第一节 矩阵概念

1.矩阵概念的引入

​ 矩阵概念的引入跟行列式一样是从多元一次方程组引入的,但是行列式相比,它还是有许多的不同点。

2.矩阵与行列式的不同之处

  1. 矩阵是数表,而行列式表示的就是一个数字。可以这样理解:矩阵所承载的信息是只能通过一大数字来表现,而行列式表面上是通过一堆数字,但实际上就是一个数字。由此可见,矩阵的信息跟丰富也跟多,所以一般在科学研究上我们多用矩阵与向量来承载信息。
  2. 矩阵的m,n可以不相同,而行列式的必须相同。

第二节 矩阵的线性运算、乘法以及转置运算

一.矩阵加法

​ 矩阵相加减====元素各自相加减

二.数与矩阵相乘

​ 一个数字与矩阵相乘====用这个数字分别与矩阵元素相乘

三.矩阵相乘

  1. 前提:m*n的矩阵只能与n j的矩阵相乘(第一个的列与第二个的行相等)

  2. 矩阵与矩阵相乘====一行对应多个列相乘,直到乘完

  3. 如果我们有线性运算:
    y = w x + b y=wx+b y=wx+b
    这是对于单个数字的,如果换为矩阵形式、向量形式;

    Y=WX+b

    其中:W叫做系数矩阵

注意:

  • 矩阵与矩阵相乘、数与矩阵相乘都满足分配律和结合律
  • 矩阵与矩阵相乘不满足交换律,数与矩阵相乘满足

四.转置矩阵

1.偶次转置不变性
( A T ) T = A (A^T)^T=A (AT)T=A
2.相加转置分配性
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
3.常数转置无效性
( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
4.相乘转置分配性
( A 1 A 2 . . . A n ) T = A 1 T A 2 T . . . A n T (A_1A_2...A_n)^T=A_1^TA_2^T...A_n^T (A1A2...An)T=A1TA2T...AnT
5.(反)对称矩阵
A T = ( − ) A A^T=(-)A AT=()A

五.矩阵的行列式(|A|、detA)

1.转置不变性
∣ A T ∣ = ∣ A ∣ T = ∣ A ∣ |A^T|=|A|^T=|A| AT=AT=A
2.常数相乘分配性
∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
3.相乘取行分配性
∣ A 1 A 2 . . . A n ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A n ∣ |A_1A_2...A_n|=|A_1||A_2|...|A_n| A1A2...An=A1A2...An

第三节 逆矩阵

一.定义

设A是n阶方阵,对于另一个n阶方阵,如果:
A B = B A = E AB=BA=E AB=BA=E
我们就称A可逆,B是A的逆矩阵,记为:
B = A − 1 A A − 1 = A − 1 A = E B=A^{-1}\\ AA^{-1}=A^{-1}A=E B=A1AA1=A1A=E

二.伴随矩阵

对于一个矩阵A的元素为a_ij,记a_ij的代数余子式为A_ij,那么:
A ∗ = { A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 1 . . . . . . A 1 n A 2 n . . . A n n } A^{*}= \left\{ \begin{matrix} A_{11}&A_{21}&...A_{n1}\\ A_{12}&A_{22}&...A_{n1}\\ ......\\ A_{1n}&A_{2n}&...A_{nn} \end{matrix} \right\} A=A11A12......A1nA21A22A2n...An1...An1...Ann
为A的伴随矩阵

对于A的伴随矩阵和可逆矩阵,有:
A A ∗ = ∣ A ∣ A − 1 = A ∗ ∣ A ∣ AA^{*}=|A|\\ A^{-1}=\frac{A^*}{|A|} AA=AA1=AA

三.用逆矩阵求解线性方程组

A X = B X = A − 1 B AX=B\\ X=A^{-1}B AX=BX=A1B

四.可逆矩阵的性质

1.偶次可逆不变性
( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
2.常值可逆规则
( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1
3.矩阵运算不分先后性
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T
4.相乘可逆分配性
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
5.可逆矩阵取行分配性:(跟三类似)
∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1
注意:没有相加可逆分配性;到目前我们已知的矩阵形式变换运算:取行、可逆、转置

第四节 分块矩阵

一.定义

​ 顾名思义,就是将原来的大矩阵分为多个小矩阵子矩阵、子块),从而达到简便运算的效果(因为通过分块过后可能会出现零矩阵、单位矩阵等特殊矩阵)

二.分块矩阵的运算

​ 就是一种逐层的运算,先将子块看作一个个数字,然后再进行内部运算,以此类推。

第五节 矩阵初等变换

一.变换类型(k!=0)

  1. 换法变换
    a i j , a i ( j + 1 ) = a i ( j + 1 ) , a i j a_{ij},a_{i(j+1)}=a_{i(j+1)},a_{ij} aij,ai(j+1)=ai(j+1),aij

  2. 倍法变换
    a i j = k a i j a_{ij}=ka_{ij} aij=kaij

  3. 消法变换
    a i j = k a i n + a i j a_{ij}=ka_{in}+a_{ij} aij=kain+aij

二.初等矩阵

​ 一切可以由单位矩阵通过初等变换得到的矩阵

  • 初等矩阵都是可逆矩阵
  • 初等矩阵的逆矩阵仍然是同类型的初等矩阵

三.用矩阵初等变换方法求可逆矩阵

( A ∣ E ) — 行 变 换 — ( E ∣ A − 1 ) (A|E)—^{行变换}—(E|A^{-1}) (AE)(EA1)

当然也可以
( A E ) — 列 变 换 — ( E A − 1 ) (\frac{A}{E})—^{列变换}—(\frac{E}{A^{-1}}) (EA)(A1E)

第六节 矩阵的秩

一.k阶子式

​ 类似行列式的子式。显然
m × n 的 k 阶 子 式 有 C m k C n k m\times n的k阶子式有C_{m}^{k}C_{n}^{k} m×nkCmkCnk

二.秩

​ 如果一个矩阵A有一个r阶子式!=0,而r+1阶子式全为0,那么我们称r为矩阵A的

秩,记作:
R ( A ) R A R(A) \quad\quad\quad\quad R_A R(A)RA
也就是说:秩就是一个矩阵中不等于0的子式的最高阶数

  1. 如果矩阵A是m*n阶矩阵,那么:
    R ( A ) ≤ m i n { m , n } R(A)\leq min\{m,n\} R(A)min{m,n}

  2. 如果一个矩阵的r阶子式不等于0,那么:
    R ( A ) ≥ r R(A) \geq r R(A)r
    如果r阶子式全等于0,那么:
    R ( A ) ≤ r R(A)\leq r R(A)r

  3. 如果一个矩阵A满足:
    R ( A ) = R ( A T ) R(A)=R(A^T) R(A)=R(AT)
    那么矩阵A的每一个子式都是转置矩阵中一个子式

  4. R ( k A ) = R ( A ) , k ! = 0 R(kA)=R(A),k!=0 R(kA)=R(A),k!=0

  5. 对于矩阵A,如果R(A)=n,那么A是满秩矩阵;否则为降秩矩阵

三.一些定理

  1. 初等变换不改变矩阵的

  2. 设P、Q分别是m、n阶可逆矩阵,则对于任意一个m*n矩阵A而言,
    R ( P A Q ) = R ( A ) R(PAQ)=R(A) R(PAQ)=R(A)

四.行阶梯形矩阵

1.行阶梯形矩阵
  • 若有零行,零行都在非零行的下面(元素全为0的行叫做零行
  • 从第一行起,下一行自左向右第一个非零元素前面零的个数逐行增加
2.最简形式

首元(每一行从左往右第一个不为0的数字)全为1阶梯形矩阵

3.阶梯形矩阵与秩的关系

行阶梯形矩阵非零行个数即为矩阵的秩

阵A而言,
R ( P A Q ) = R ( A ) R(PAQ)=R(A) R(PAQ)=R(A)

四.行阶梯形矩阵

1.行阶梯形矩阵
  • 若有零行,零行都在非零行的下面(元素全为0的行叫做零行
  • 从第一行起,下一行自左向右第一个非零元素前面零的个数逐行增加
2.最简形式

首元(每一行从左往右第一个不为0的数字)全为1阶梯形矩阵

3.阶梯形矩阵与秩的关系

行阶梯形矩阵非零行个数即为矩阵的秩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值