已解决:检测到 #include 错误。请更新 includePath。已为此翻译单元(D:\Study\hello.cpp)禁用波形曲线。C/C++(1696)

在VScode中配置c++环境中遇到的问题,此问题并不影响运行出“hello world”等程序,但是始终标识错误,文件名也是红色的,非常不舒服。

已经完成的工作:

  • 已经安装好MinGW,并已配置好环境变量,cmd检测安装没有问题。
  • VScode已经下载c/c++等插件。

但依然出现下面问题:

 解决:

Step1:设置中搜索CompilerPath

 Step2:找到MinGW中g++.exe执行文件

  Step3:把g++.exe的路径添加到Compiler Path中

 Step4:重启VScode即可

  原因:

如果你电脑装了visual studio,或者wsl(windows下Linux子系统),vscode会优先用前两者的编译器,如果前两个都没检测到,vscode才会使用mingw,下图官方文档说的很清楚

   参考来源:检测到 #include 错误。请更新 includePath。已为此翻译单元 禁用波形曲线。C/C++ 无法打开 源 文件 "bits/stdc++.h"C/C++ - tao10203 - 博客园

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值