目录
这些方法没有测试实际效果
方法 1:积分法(Poisson 重建)
法线图提供的是表面梯度信息(∂Z/∂X 和 ∂Z/∂Y),我们可以通过 求解泊松方程(Poisson Equation) 来恢复深度图:
ΔZ=∇⋅N
其中:
- Z(x,y)Z(x, y)Z(x,y) 是深度值
- N(x,y)=(Nx,Ny,Nz)N(x, y) = (N_x, N_y, N_z)N(x,y)=(Nx,Ny,Nz) 是法线向量
- 需要解偏导数方程恢复 Z(x,y)Z(x, y)Z(x,y)
Python 实现:
import cv2
import numpy as np
from scipy.sparse.linalg import cg
from scipy.sparse import diags
def normal_to_depth(normal_map):
"""
从法线图恢复深度图
:param normal_map: (H, W, 3) 的 numpy 数组,范围在 [-1, 1] 之间
:return: 归一化的深度图
"""
h, w, _ = normal_map.shape
nx, ny, nz = normal_map[..., 0], normal_map[..., 1], normal_map[..., 2]
# 避免 nz 过小(防止除零)
nz[nz == 0] = 1e-8
# 计算梯度
dzdx = -nx / nz
dzdy = -ny / nz
# 设定泊松方程的系数矩阵
A = diags([-1, -1, 4, -1, -1], [-w, -1, 0, 1, w], shape=(h*w, h*w))
b = np.zeros(h*w)
# 计算梯度的散度
dzdx[:, -1] = 0 # 右边界处理
dzdy[-1, :] = 0 # 下边界处理
b[:-w] += dzdy[:-1, :].flatten()
b[w:] -= dzdy[1:, :].flatten()
b[:-1] += dzdx[:, :-1].flatten()
b[1:] -= dzdx[:, 1:].flatten()
# 解泊松方程
depth, _ = cg(A, b)
# 归一化到 [0, 1] 方便可视化
depth = depth.reshape((h, w))
depth = (depth - depth.min()) / (depth.max() - depth.min())
return depth
# 读取法线图(需要是 [-1,1] 归一化)
normal_map = cv2.imread("normal_map.png").astype(np.float32) / 127.5 - 1
depth_map = normal_to_depth(normal_map)
cv2.imshow("Recovered Depth", (depth_map * 255).astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
优点:
- 物理上更合理,能处理光滑过渡的表面
- 适用于曲面较平滑的场景
缺点:
- 计算量大,需要解偏微分方程(泊松重建)
- 对法线误差敏感,会影响深度恢复质量
方法 2:逐步积分法(梯度累加)
另一种更简单的方法是 逐步积分:
def integrate_gradients(nx, ny, nz):
"""
从法线梯度积分计算深度
:param nx, ny, nz: 法线分量
:return: 归一化深度图
"""
h, w = nx.shape
depth = np.zeros((h, w), dtype=np.float32)
for y in range(1, h):
depth[y, 0] = depth[y - 1, 0] + ny[y, 0] / nz[y, 0]
for x in range(1, w):
depth[:, x] = depth[:, x - 1] + nx[:, x] / nz[:, x]
depth = (depth - depth.min()) / (depth.max() - depth.min()) # 归一化
return depth
depth_map = integrate_gradients(normal_map[..., 0], normal_map[..., 1], normal_map[..., 2])
cv2.imshow("Depth Map", (depth_map * 255).astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
优点:
- 计算速度快,适合实时应用
缺点:
- 积累误差,容易导致深度不均匀
方法 3:深度学习(AI 估计)
如果想要 更高质量的恢复,可以使用深度学习,如 CNN 或 Transformer:
- 直接训练 CNN 进行法线 → 深度转换
- 使用 NeRF(Neural Radiance Fields) 从法线预测深度
例如,使用 TensorFlow/PyTorch 训练:
训练后可用于法线转换深度。
总结
方法 | 原理 | 适用场景 | 优缺点 |
---|---|---|---|
泊松方程重建 | 通过散度计算深度 | 物理精确、表面平滑 | 计算复杂,适合高质量恢复 |
梯度积分 | 累加梯度恢复深度 | 需要连续表面,适用于小范围 | 计算快但误差大 |
深度学习 | 训练 CNN 预测深度 | 适用于任意形状 | 需要训练数据,计算开销大 |
如果你的法线图质量较好,泊松方程重建 是最推荐的方法。如果需要实时性,梯度积分 方法较快。如果数据复杂,深度学习 是更强大的解决方案。