8、PyTorch教程---神经网络转化为功能块

21 篇文章 1 订阅 ¥19.90 ¥99.00
本文介绍了深度学习算法的训练过程,包括建立数据管道、构建网络架构、评估损失函数和优化权重。重点讨论了如何在PyTorch中将神经网络转化为功能模块,以实现更高效的学习和预测。
摘要由CSDN通过智能技术生成

训练深度学习算法涉及以下步骤:

1. 建立数据管道
2. 构建网络架构
3. 使用损失函数评估架构
4. 使用优化算法优化网络架构的权重

训练特定的深度学习算法需要将神经网络转化为下面所示的功能块的确切要求:

关于上面的图表,任何深度学习算法都涉及获取输入数据,构建相应的架构,其中包含一系列嵌套的层。

如果您观察上面的图表,准确性是通过使用损失函数来评估的,该函数与神经网络的权重优化相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值