理解了机器学习的概念之后,我们现在可以将焦点转向深度学习的概念。深度学习是机器学习的一个分支,被认为是近几十年来研究人员采取的关键步骤。深度学习实现的示例包括图像识别和语音识别等应用。
以下是两种重要的深度神经网络类型:
卷积神经网络
循环神经网络
在本章中,我们将重点关注CNN,即卷积神经网络。
卷积神经网络
卷积神经网络被设计用于通过多个数组层处理数据。这种类型的神经网络用于图像识别或人脸识别等应用。CNN与普通神经网络的主要区别在于,CNN将输入作为二维数组,并直接在图像上操作,而不像其他神经网络那样专注于特征提取。
CNN的主要应用领域包括识别问题的解决方案。像谷歌和Facebook这样的顶级公司已经投资于识别项目的研究和开发,以加快工作的进展速度。
卷积神经网络使用三个基本概念:
1. 局部感受野(Local respective fields)
2. 卷积(Convolution)
3. 池化(Pooling)
让我们详细了解这些概念。
CNN利用输入数据中存在的空间相关性。神经网络的每个连续层连接一些输入神经元。这个特定区域被称为局部感受野。局部感受野专注于隐藏神经元。隐藏神经元在指定的区域内处理输入数据,而不了解特定边界外的变化。
以下是生成局部感受野的示意图: