7、TensorFlow教程--- 卷积神经网络

本文深入探讨深度学习中的卷积神经网络(CNN),介绍其原理和在图像识别中的应用。通过TensorFlow实现CNN,包括卷积、池化等关键概念,并展示代码实现过程。
摘要由CSDN通过智能技术生成

理解了机器学习的概念之后,我们现在可以将焦点转向深度学习的概念。深度学习是机器学习的一个分支,被认为是近几十年来研究人员采取的关键步骤。深度学习实现的示例包括图像识别和语音识别等应用。

以下是两种重要的深度神经网络类型:

卷积神经网络
循环神经网络
在本章中,我们将重点关注CNN,即卷积神经网络。

卷积神经网络
卷积神经网络被设计用于通过多个数组层处理数据。这种类型的神经网络用于图像识别或人脸识别等应用。CNN与普通神经网络的主要区别在于,CNN将输入作为二维数组,并直接在图像上操作,而不像其他神经网络那样专注于特征提取。

CNN的主要应用领域包括识别问题的解决方案。像谷歌和Facebook这样的顶级公司已经投资于识别项目的研究和开发,以加快工作的进展速度。

卷积神经网络使用三个基本概念:

1. 局部感受野(Local respective fields)
2. 卷积(Convolution)
3. 池化(Pooling)
让我们详细了解这些概念。

CNN利用输入数据中存在的空间相关性。神经网络的每个连续层连接一些输入神经元。这个特定区域被称为局部感受野。局部感受野专注于隐藏神经元。隐藏神经元在指定的区域内处理输入数据,而不了解特定边界外的变化。

以下是生成局部感受野的示意图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值