前言
本文为个人学习笔记
学习内容视频:
1.https://www.bilibili.com/video/BV1Db411y7nf?share_source=copy_web
2.https://www.bilibili.com/video/BV1Hb411a7kf?share_source=copy_web
3.https://www.bilibili.com/video/BV1s4411X7qd?share_source=copy_web(回到控制原理)
4.https://www.bilibili.com/video/BV1hV411v7KB?p=33&share_source=copy_web
一、拉普拉斯变换的收敛域与逆变换
实现拉普拉斯变换需要函数可积,即具有收敛域(ROC)
L〔f(t)〕=F(s)=1/s+a满足σ=Re(s)>⁻a
S=σ⁺wi
微分方程,描述动态世界
常系数线性⇔线性时不变系统
对于非线性:平衡点线性化处理;非线性分析,控制
求解:
1.从t→s,(从时域到S域)L〔f(t)〕
2.加减乘除代数运算
3.从S→t,L⁻¹〔f(t)〕(拉普拉斯逆运算)
欧拉公式:sin2t=(e⁻²ⁱᵗ-e²ⁱᵗ)/2i
cos2t=(e⁻²ⁱᵗ+e²ⁱᵗ)/2i
eⁱᵗ=cost+isint
二、传递函数与拉普拉斯变换
1.
利用拉普拉斯变换将卷积变成乘积U(s)G(s)=X(s)求X(s)
通过设计系统输入U(s)去配置极点,从而达到控制系统值的目的
2.稳定性分析
稳定性是控制系统的基础。
有界输入一定有有界输出。
(极点,零点)与(稳定,不稳定,临界稳定)
设计极点配置
四,拉普拉斯变换的应用
通过拉普拉斯变换把微积分方程变成代数方程
微分方程
变系数微分方程
积分方程(卷积等于各自拉普拉斯变换的乘积)
力学系统
列微、积分方程→拉普拉斯变换→代数运算→拉普拉斯逆变换