控制工程学习3

前言

本文为个人学习笔记

学习内容视频:
1.https://www.bilibili.com/video/BV1Db411y7nf?share_source=copy_web
2.https://www.bilibili.com/video/BV1Hb411a7kf?share_source=copy_web
3.https://www.bilibili.com/video/BV1s4411X7qd?share_source=copy_web(回到控制原理)
4.https://www.bilibili.com/video/BV1hV411v7KB?p=33&share_source=copy_web

一、拉普拉斯变换的收敛域与逆变换

实现拉普拉斯变换需要函数可积,即具有收敛域(ROC)

L〔f(t)〕=F(s)=1/s+a满足σ=Re(s)>⁻a

S=σ⁺wi

微分方程,描述动态世界

常系数线性⇔线性时不变系统

对于非线性:平衡点线性化处理;非线性分析,控制

求解:

1.从t→s,(从时域到S域)L〔f(t)〕

2.加减乘除代数运算

3.从S→t,L⁻¹〔f(t)〕(拉普拉斯逆运算)

欧拉公式:sin2t=(e⁻²ⁱᵗ-e²ⁱᵗ)/2i

                    cos2t=(e⁻²ⁱᵗ+e²ⁱᵗ)/2i

                    eⁱᵗ=cost+isint

11a586142f214c08a78194de87be2032.png

 

二、传递函数与拉普拉斯变换

1.

利用拉普拉斯变换将卷积变成乘积U(s)G(s)=X(s)求X(s)

通过设计系统输入U(s)去配置极点,从而达到控制系统值的目的

6748e06760854989a6717b2f64cbfd04.png

 

 

 

2.稳定性分析

稳定性是控制系统的基础。

有界输入一定有有界输出。

abff3c72ffeb4b9db8edac750143ff39.png

 

 

(极点,零点)与(稳定,不稳定,临界稳定)

2b934ceccd294076be16757a649cb2a1.png

 

设计极点配置


四,拉普拉斯变换的应用

通过拉普拉斯变换把微积分方程变成代数方程

微分方程

变系数微分方程

2766ef290b294704a8a5d1469ca5858c.png

 

积分方程(卷积等于各自拉普拉斯变换的乘积)

b1f077c30ad34b4198e9a078786e148b.png

 

力学系统

列微、积分方程→拉普拉斯变换→代数运算→拉普拉斯逆变换

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值