线性方程组的求解

已知 x 1 , x 2 , . . . , x n ∈ R N , y 1 , y 2 , . . . , y N ∈ R 1 x_1, x_2, ..., x_n \in R^N,y_1, y_2,...,y_N\in R^1 x1,x2,...,xnRN,y1,y2,...,yNR1
{ y 1 = x 11 a 1 + x 12 a 2 + . . . + x 1 n a n y 2 = x 21 a 1 + x 22 a 2 + . . . + x 2 n a n y N = x n 1 a 1 + x n 2 a 2 + . . . + x n n a n \begin{cases}y^1=x_{11}a_1 + x_{12}a_2 + ... + x_{1n}a_n\\y^2=x_{21}a_1 + x_{22}a_2 + ... + x_{2n}a_n\\y^N=x_{n1}a_1 + x_{n2}a_2 + ... + x_{nn}a_n \end{cases} y1=x11a1+x12a2+...+x1nany2=x21a1+x22a2+...+x2nanyN=xn1a1+xn2a2+...+xnnan
则有: X N × n a n × 1 = Y N × 1 X_{N\times n}a_{n\times 1}=Y_{N\times 1} XN×nan×1=YN×1
目标求 a n × 1 a_{n\times 1} an×1

N = n N=n N=n,且 X N × n 可 逆 时 X_{N\times n}可逆时 XN×n

a = X − 1 Y a=X^{-1}Y a=X1Y

N ≠ n N\neq n N=n$

求最小二乘解, m i n J = ∣ ∣ X a − Y ∣ ∣ 2 minJ=||Xa-Y||^2 minJ=XaY2
J = ( X a − Y ) T ( X a − Y ) J=(Xa-Y)^T(Xa-Y) J=(XaY)T(XaY)

∂ J ∂ a = X T ( X a − Y ) = 0 \frac{\partial J}{\partial a}=X^T(Xa-Y)=0 aJ=XT(XaY)=0

X T X a = X T Y X^TXa = X^TY XTXa=XTY

X T X X^TX XTX可逆时,此时一般 N > > n N>>n N>>n(样本数远大于特征数)

a = ( X T X ) − 1 X T Y a = (X^TX)^{-1}X^TY a=(XTX)1XTY(最小二乘解)

X T X X^TX XTX不可逆时,此时一般 N < n N<n N<n(样本数远小于特征数)

加入正则项,解决过拟合

J = ∣ ∣ X a − Y ∣ ∣ 2 + λ ∣ ∣ a ∣ ∣ 2 J=||Xa-Y||^2+\lambda ||a||^2 J=XaY2+λa2

∂ J ∂ a = X T ( X a − Y ) + λ a = 0 \frac{\partial J}{\partial a}=X^T(Xa-Y)+\lambda a=0 aJ=XT(XaY)+λa=0

( X T X + λ I ) a = X T Y (X^TX+\lambda I)a=X^TY (XTX+λI)a=XTY

因为 X T X + λ I X^TX+\lambda I XTX+λI的特征值必然全大于0,则 X T X + λ I X^TX+\lambda I XTX+λI必然可逆

a = ( X T X + λ I ) − 1 X T Y a=(X^TX+\lambda I)^{-1}X^TY a=(XTX+λI)1XTY(岭回归)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值