机器人学中的状态估计(三):线性高斯系统离散时间的批量估计问题

本文深入探讨了线性高斯系统离散时间的批量状态估计问题,包括定义、估计方法及解的存在性和唯一性。通过对运动模型和观测模型的分析,介绍了最大后验估计和贝叶斯估计两种方法,强调了在无初始状态信息时,最优状态的存在性依赖于特定条件。
摘要由CSDN通过智能技术生成

1. 定义

(1)首先,考虑离散时间线性时变系统,有如下的运动模型和观测模型:
运动方程: x k = A k − 1 x k − 1 + v k + w k        k = 1 , ⋯   , K 观测方程: y k = C k x k + n k                   k = 0 , ⋯   , K 运动方程:x_k=A_{k-1}x_{k-1}+v_k+w_k \ \ \ \ \ \ k=1,\cdots,K \\ 观测方程:y_k = C_kx_k + n_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k=0,\cdots,K 运动方程:xk=Ak1xk1+vk+wk      k=1,,K观测方程:yk=Ckxk+nk                 k=0,,K
​ 各变量含义如下:

  • 系统状态: x k ∈ R N x_k\in{R}^N xkRN k k k时刻/当前时刻)
  • 初始状态: x 0 ∈ R N ∼ N ( x ˇ 0 , p ˇ 0 ) x_0\in{R}^N \sim{\mathcal{N}(\check{x}_0,\check{p}_0)} x0RNN(xˇ0,pˇ0)
  • 输入: v k ∈ R N v_k\in{R}^N vkRN
  • 过程噪声: w k ∈ R N ∼ N ( 0 , Q k ) w_k\in{R}^N\sim{\mathcal{N}(0,Q_k)} wkRNN(0,Qk) 零均值高斯白噪声
  • 测量: y k ∈ R M y_k\in{R}^M ykRM
  • 测量噪声: n k ∈ R M ∼ N ( 0 , R k ) n_k\in{R}^M\sim{\mathcal{N}(0,R_k)} nkRMN(0,Rk)

注意:

  • 一般而言,系统是先经过运动模型,再经过观测模型。
  • 只经过运动模型的系统状态称为先验(不含观测);既经过运动模型,又经过观测模型的系统状态称为后验(包含观测)。
  • 均值表示所估计的状态,方差表示该估计状态的不确定度。

(2)明确问题

​ 所谓的状态估计是指:在 k k k个时间点上,基于初始的状态信息 x ˇ 0 \check{x}_0 xˇ0,一系列观测数据 y 0 : k , m e a s y_{0:k,meas} y0:k,meas,一系列输入 v 1 : k v_{1:k} v1:k,以及系统的运动模型和观测模型,来计算系统真实状态的估计值 x ^ k \hat{x}_k x^k。也就是说,已知: x ˇ 0 , v 1 : k , y 0 : k , m e a s \check{x}_0,v_{1:k},y_{0:k,meas} xˇ0v1:k,y0:k,meas,求 x ^ k \hat{x}_k x^k
(3)问题类别

  • 批量式线性高斯系统状态估计:一次性使用所有时刻数据来推算所有时刻状态(实时性不强)
  • 递归式线性高斯系统状态估计:使用上一时刻数据来推算下一时刻状态(可实时估计)

2. 估计方法

目的:结合初始信息、传入量、观测量,以及运动方程和观测方程,估计最优的系统状态 x ^ k \hat{x}_k x^k。那么在批量式情况下,并依据运动方程和观测方程可知,要求的是:第一,使概率密度函数 p ( x ∣ v , y ) p(x|v,y) p(xv,y)取得最大值时的 x x x(即为最优的系统状态 x ^ \hat{x} x^);第二,或者是求出概率密度函数 p ( x ∣ v , y ) p(x|v,y) p(xv,y)具体表达式(也就是要求出其均值和方差)。由于含有观测量 y y y,因此所求得的均值就是后验均值,即系统的最优状态 x ^ \hat{x} x^
 按照上述分析,批量式线性高斯系统状态估计可以有以下两种方法:

  • 最大后验估计:求出使 p ( x ∣ v , y ) p(x|v,y) p(xv,y)最大的 x x x,即 x ^ = a r g m a x   p ( x ∣ v , y ) \hat{x} = argmax\ p(x|v,y) x^=argmax p(xv,y)。关键点:第一,以 x x x为变量求出 p ( x ∣ v , y ) p(x|v,y) p(xv,y)的形式(不一定是均值和协方差,也可以是其他式子的组合表示);第二,依据优化理论求最值(导数为0)。
  • 贝叶斯估计:求出 p ( x ∣ v , y ) p(x|v,y) p(xv,y)的(均值、协方差)表达形式,求出的均值就是所估计的最优状态。

(1)最大后验估计(MAP)

目的:已知先验信息 x ˇ 0 \check{x}_0 xˇ0,以及所有时刻的输入 v v v,观测 y y y的条件下,推测出所有时刻的最优状态 x ^ \hat{x} x^

​ 设: x = x 0 : k = ( x 0 , ⋯   , x k ) x=x_{0:k}=(x_0,\cdots,x_k) x=x0:k=(x0,,xk) v = ( x ˇ 0 , v 1 : k ) v=(\check{x}_0,v_{1:k}) v=(xˇ0,v1:k) y = y 0 : k = ( y 0 , ⋯   , y k ) y=y_{0:k}=(y_0,\cdots,y_k) y=y0:k=(y0,,yk),则问题转化为求: x ^ = a r g m a x   p ( x ∣ v , y ) \hat{x}=argmax \ p(x|v,y) x^=argmax p(xv,y)

​ 由贝叶斯公式:
p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) p(x|y)=\frac{p(y|x)p(x)}{p(y)} p(xy)=p(y)p(yx)p(x)
​ 可类推出:
p ( x ∣ v , y ) = p ( y ∣ x , v ) p ( x ∣ v ) p ( y ∣ v ) p(x|v,y)=\frac{p(y|x,v)p(x|v)}{p(y|v)} p(xv,y)=p(yv)p(yx,v)p(xv)
​ 由于观测方程: y k = C k x k + n k y_k=C_kx_k+n_k yk=Ckxk+nk y k y_k yk v k v_k vk无关,所以 p ( y ∣ x , v ) = p ( y ∣ x ) p(y|x,v)=p(y|x) p(yx,v)=p(yx)。又由于分母中不含 x x x p ( y ∣ v ) p(y|v) p(yv) x x x无关,则有:
x ^ = a r g m a x   p ( x ∣ y , v ) = a r g m a x   p ( y ∣ x ) ⋅ p ( x ∣ v ) \hat{x} = argmax \ p(x|y,v) = argmax \ p(y|x)\cdot{p(x|v)} x^=argmax p(xy,v)=argmax p(yx)p(xv)
​ 因此,下面主要是求出 p ( y ∣ x ) p(y|x) p(yx) p ( x ∣ v ) p(x|v) p(xv),进而通过优化理论求 a r g m a x argmax argmax

​ 假设:对于所有时刻 k = 0 , ⋯   , K k=0,\cdots,K k=0,,K,所有的噪声项 w k w_k wk n k n_k nk之间是无关的,结合运动方程和观测方程, p ( y ∣ x ) p(y|x) p(yx) p ( x ∣ v ) p(x|v) p(xv)可做如下分解:
p ( y ∣ x ) = p ( y 0 , ⋯   , y K ∣ x 0 , ⋯   , x K ) = ∏ k = 0 K p ( y k ∣ x k ) p ( x ∣ v ) = p ( x 0 , ⋯   , x K ∣ x ˇ 0 , v 1 , ⋯   , v K ) = p ( x 0 ∣ x ˇ 0 ) ⋅ ∏ k = 1 K p ( x k ∣ x k − 1 , v k ) p(y|x) = p(y_0,\cdots,y_K|x_0,\cdots,x_K) = \prod_{k=0}^Kp(y_k|x_k) \\ p(x|v) = p(x_0,\cdots,x_K|\check{x}_0,v_1,\cdots,v_K) = p(x_0|\check{x}_0)\cdot{\prod_{k=1}^Kp(x_k|x_{k-1},v_k)} p(yx)=p(y0,,yKx0,,xK)=k=0Kp(ykxk)p(xv)=p(x0,,xKxˇ0,v1,,vK)=p(x0xˇ0)k=1Kp(xkxk1,vk)
对于分解后的 p ( x ∣ v ) p(x|v) p(xv) p ( y ∣ x ) p(y|x) p(yx),使用具体的概率密度函数形式来表达,如下所示:

  • 对于 p ( x 0 ∣ x ˇ 0 ) p(x_0|\check{x}_0) p(x0xˇ0),由于已知的先验信息: x 0 ∼ N ( x ˇ 0 , P ˇ 0 ) x_0\sim{\mathcal{N}(\check{x}_0,\check{P}_0)} x0N(xˇ0,Pˇ0),则:
    p ( x 0 ∣ x ˇ 0 ) = 1 ( 2 π ) N d e t ( P ˇ 0 ) e x p ( − 1 2 ( x 0 − x ˇ 0 ) T P ˇ − 1 ( x 0 − x ˇ 0 ) ) p(x_0|\check{x}_0) = \frac{1}{\sqrt{(2\pi)^Ndet(\check{P}_0)}}exp(-\frac{1}{2}(x_0-\check{x}_0)^T\check{P}^{-1}(x_0-\check{x}_0)) p(x0xˇ0)=(2π)Ndet(Pˇ0) 1exp(21(x0xˇ0)TPˇ1(x0xˇ0))

  • 对于 p ( x k ∣ x k − 1 , v k ) p(x_k|x_{k-1},v_k) p(xkxk1,vk),由运动方程: x k = A k − 1 x k − 1 + v k + w k        ( w k ∼ N ( 0 , Q k ) ) x_k=A_{k-1}x_{k-1}+v_k+w_k \ \ \ \ \ \ (w_k\sim{\mathcal{N}(0,Q_k)}) xk=Ak1xk1+vk+wk      (wkN(0,Qk))可知当 x k − 1 , v k x_{k-1},v_k xk1,vk已知时,有:
    E [ x k ] = E [ A k − 1 x k − 1 + v k + w k ] = A k − 1 x k − 1 + v k + 0 = A k − 1 x k − 1 + v k E [ ( x k − E [ x k ] ) ( x k − E [ x k ] ) T ] = E [ w k w k T ] = Q k E[x_k] = E[A_{k-1}x_{k-1}+v_k+w_k] = A_{k-1}x_{k-1}+v_k+0=A_{k-1}x_{k-1}+v_k \\ E[(x_k-E[x_k])(x_k-E[x_k])^T] = E[w_kw_k^T] = Q_k E[xk]=E[Ak1xk1+vk+wk]=Ak1xk1+vk+0=Ak1xk1+vkE[(xkE[xk])(xkE[xk])T]=E[wkwkT]=Qk
    所以, p ( x k ∣ x k − 1 , v k ) p(x_k|x_{k-1},v_k) p(xkxk1,vk)的表达式为:
    p ( x k ∣ x k − 1 , v k ) = 1 ( 2 π ) N d e t ( Q k ) e x p ( − 1 2 ( x k − A k − 1 x k − 1 − v k ) T Q k − 1 ( x k − A k − 1 x k − 1 − v k ) ) p(x_k|x_{k-1},v_k) = \frac{1}{\sqrt{(2\pi)^Ndet(Q_k)}}exp(-\frac{1}{2}(x_k-A_{k-1}x_{k-1}-v_k)^TQ_k^{-1}(x_k-A_{k-1}x_{k-1}-v_k)) p(xkxk1,vk)=(2π)Ndet(Qk) 1exp(21(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值