线性代数的本质(十)——抽象向量空间

我们现在重新看第一节一个看似简单的问题:“向量是什么”?以二维向量为例,它是一个箭头,为了方便我们使用坐标来描述它?或者它是本身就是一个实数对,我们只是将它形象理解成空间的一个箭头?还是说这两种观点只是抽象事物的体现?

从某种意义上讲,函数实际上就是另一种向量。类比两个向量的加法,我们也可以将两个函数 f f f g g g 相加从而获得一个新的函数 ( f + g ) (f + g) (f+g)

在这里插入图片描述

在这里插入图片描述

类似的,函数的数乘跟向量数乘类似

在这里插入图片描述

函数的线性变换也是一样,这个变换接收一个函数,然后把它变成另一个函数。在为几分钟我们可以找到一个常见的例子——导数。回顾第三节,我们知道一个变换是线性的主要看这个变换满不满足可加性和成比例这两个基本特性。

L ( v ⃗ + w ⃗ ) = L ( v ⃗ ) + L ( w ⃗ ) L(\vec{v} + \vec{w}) = L(\vec{v}) + L(\vec{w}) L(v +w )=L(v )+L(w )

L ( c v ⃗ ) = c L ( v ⃗ ) L(c\vec{v}) = cL(\vec{v}) L(cv )=cL(v )

在这里插入图片描述

在这里插入图片描述

学过求导的人知道,求导符合变换的可加性和成比例,所以求导是线性运算。

d d x ( x 3 + x 2 ) = d d x ( x 3 ) + d d x ( x 2 ) \frac{d}{dx}(x^3 + x^2) = \frac{d}{dx}(x^3) + \frac{d}{dx}(x^2) dxd(x3+x2)=dxd(x3)+dxd(x2)

d d x ( 4 x 3 ) = 4 d d x ( x 3 ) \frac{d}{dx}(4x^3) = 4\frac{d}{dx}(x^3) dxd(4x3)=4dxd(x3)

我们看看怎么用矩阵来描述求导。我们现在把目光限制在多项式空间中,这个空间有无穷个基函数,分别是 x x x 的不同次幂。

b 0 ( x ) = 1 b 1 ( x ) = x b 2 ( x ) = x 2 . . . b_0(x) = 1 \\ b_1(x) = x \\ b_2(x) = x^2 \\ ... b

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值