我们来看在二维空间中的这个向量

我们用 [32]\begin{bmatrix} 3 \\ 2 \end{bmatrix}[32] 来描述这个向量的坐标。这里用的坐标系是最原始的坐标,由 i^\hat{i}i^ 和 j^\hat{j}j^ 两个基向量决定,如果现在我们换一个坐标系,那如何表示这个向量呢。

这个新坐标系中的 b1⃗\vec{b_1}b1 和 b2⃗\vec{b_2}b2 对应于原来坐标系中的 [21]\begin{bmatrix} 2 \\ 1 \end{bmatrix}[21] 和 [−11]\begin{bmatrix} -1 \\ 1 \end{bmatrix}[−11] ,但是在这个心坐标系中,b1⃗\vec{b_1}b1 和 b2⃗\vec{b_2}b2 代表的是 [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix}[10] 和 [01]\begin{bmatrix} 0 \\ 1 \end{bmatrix}[01]

为了说明白,我们先来看看使用这两个新基向量来表示的向量如何转换为用我们的 i^\hat{i}i^ 和 j^\hat{j}j^ 来表示,首先我们看看新坐标系中的 [−12]\begin{bmatrix} -1 \\ 2 \end{bmatrix}[−12

这篇博客探讨了线性代数中的基变换概念,通过一个实例展示了如何在二维空间中从原始坐标系转换到新坐标系。文章解释了如何使用基变换矩阵将向量在坐标系间进行转换,并详细阐述了逆时针旋转90°的变换在不同坐标系下的表示方法。此外,还引入了相似矩阵的概念,解释了如何通过可逆矩阵将变换从一个坐标系转换到另一个坐标系。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



