线性代数的本质(八)——基变换

这篇博客探讨了线性代数中的基变换概念,通过一个实例展示了如何在二维空间中从原始坐标系转换到新坐标系。文章解释了如何使用基变换矩阵将向量在坐标系间进行转换,并详细阐述了逆时针旋转90°的变换在不同坐标系下的表示方法。此外,还引入了相似矩阵的概念,解释了如何通过可逆矩阵将变换从一个坐标系转换到另一个坐标系。

我们来看在二维空间中的这个向量

在这里插入图片描述

我们用 [32]\begin{bmatrix} 3 \\ 2 \end{bmatrix}[32] 来描述这个向量的坐标。这里用的坐标系是最原始的坐标,由 i^\hat{i}i^j^\hat{j}j^ 两个基向量决定,如果现在我们换一个坐标系,那如何表示这个向量呢。

在这里插入图片描述

这个新坐标系中的 b1⃗\vec{b_1}b1 b2⃗\vec{b_2}b2 对应于原来坐标系中的 [21]\begin{bmatrix} 2 \\ 1 \end{bmatrix}[21][−11]\begin{bmatrix} -1 \\ 1 \end{bmatrix}[11] ,但是在这个心坐标系中,b1⃗\vec{b_1}b1 b2⃗\vec{b_2}b2 代表的是 [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix}[10][01]\begin{bmatrix} 0 \\ 1 \end{bmatrix}[01]

在这里插入图片描述

为了说明白,我们先来看看使用这两个新基向量来表示的向量如何转换为用我们的 i^\hat{i}i^j^\hat{j}j^ 来表示,首先我们看看新坐标系中的 [−12]\begin{bmatrix} -1 \\ 2 \end{bmatrix}[12

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值