线性代数学习笔记2-3补充:抽象向量空间

之前说过,线性的核心就是可加性和比例性

线性性(可加性和齐次性)在二维空间中的体现就是变换后原点不变且网格平行等距分布,由此得到重要推论:一个线性变换可以通过它对基向量的作用来完全描述(从而矩阵向量乘法才有了合理性,因为任意向量都是基向量的线性组合,故向量变换后也是变换的基向量的线性组合)

函数也是向量

函数在某种程度上也是一种向量,例如:

  • 函数有线性性 ( f + g ) ( x ) = f ( x ) + g ( x ) (f+g)(x)=f(x)+g(x) (fg)(x)f(x)+g(x)
  • 函数有比例性 f ( k x ) = k f ( x ) f(kx)=kf(x) f(kx)=kf(x)
  • 函数有线性变换(接收一个函数,输出另一个函数)
    如导数 d d t f ( x ) \frac{d}{dt}f(x) dtdf(x)(实际上,微分是一种线性算子,因为求导具有可加性和比例性)
函数的“线性变换”

如何将矩阵描述的线性变换应用到函数的世界中?
这里首先要注意多项式的空间具有无穷维,它的基函数是1,x,x2…到x的无穷次幂

  • 因此,任意多项式的坐标都是无穷长的(如多项式 3 + 2 x 3+2x 3+2x的向量写作 ( 3 , 2 , 0 , 0 , 0...0 ) (3,2,0,0,0...0) (3,2,0,0,0...0)
  • 则求导变换对应的矩阵也是无穷维的,表示如下
    在这里插入图片描述

这个“微分变换”矩阵如何得出?
和之前的规律一样,矩阵中每一列就是每个基函数在变换后的坐坐标(矩阵第二列,就是第二个基函数 x x x求导变换后的坐标 ( 0 , 1 , 0 , 0... ) (0,1,0,0...) (0,1,0,0...)

向量一种抽象

向量究竟是什么?向量是一种高度的抽象

实际上,数学中有很多类似向量的事物,只要它们具有线性性(数乘、相加概念),不管是一组数/一组箭头/一组函数,线性代数中的线性变换,零空间,点积,特征向量等概念都可以应用上去

最终,我们将一切“类似向量”的东西(一组箭头、一组数字列表、一组函数)构成的集合称为抽象向量空间
这里的抽象性在于,不必关系具体形式,只关心它们是否遵守关于向量加法和数乘的一些共同公理,只要满足这些公理,就能被称为向量

在这里插入图片描述

这样一来,数学家不用考虑向量具体是什么,只是证明公理,其他人就能将这些公理应用到具体领域。问向量是什么,就像在问3是什么(它是所有三个东西的集合的抽象概念,它可以是3个苹果,3个多项式…)

普适的代价是抽象。这就是教科书中倾向于抽象表述的根本原因

例如,对于微分方程 d 2 y d x 2 + y = 0 \frac{d^2y}{dx^2}+y=0 dx2d2y+y=0
其“解空间”的“基”就是 c o s x cosx cosx s i n x sinx sinx,这就是说,方程的所有解都可以表示为基的线性组合 c 1 c o s x + c 2 s i n x c_1cosx+c_2sinx c1cosx+c2sinx
这里虽然 c o s x cosx cosx s i n x sinx sinx看上去是函数,但我们仍能将其称为“向量”,因为它们满足向量的相加和数乘规则

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值