代数运算:定义 M集合 上的一个法则 , 如果对于集合上的每一组有 序对 a,b属于M,总存在唯一的 d属于M,使得aob=d 。 那么,这样一个法则 就被成为集合 M上的代数运算。
a,b不一定是数,只要是元素就可以了。甚至可以是2个变换关系。
• T(M) T(M)记 为集合M上所有变换构成的集合,那么法则 “变换 乘法或者说是变换合成” 将会是这个集合上的一个代数运 算。
变换乘法就是以一个集合上的变换为元素的乘法,也就是变换的嵌套。
详细解释:M是普通的集合,T(M)里面装满了M上的变换。那 “变换 乘法或者说是变换合成”是什么意思呢?就是说,先对M中的元素进行w1变换(w当然就是T(M)的元素了),在进行w2变换,其效果和w3变换一样,那就叫w1ow2=w3,这就成为了“T(M)上的代数运算”,代数运算的参与者是一大堆变换
• S(M) 是一个双射变换的集合(s(M)属于T(M)) “变换乘法” 也是这个集合S(M)上的一个 代数运算
详细解释:M是普通集合,S(M)里装满了M上的双射变换。对一个M中的元素进行w1变换(w属于S(M),是一个双数变换),在进行w2变换,其效果和w3一致,就叫w1ow2=w3,并且w3也会是M上的一个双射变换,也属于S(M),所以这也是S(M)上的代数运算。
注意:变换乘法的书写方式与计算方法:
w1w2(n):代表先把n放到w2里,再把结果放到w1里。
乘法表:
注意:这个有限集也可以是由变换组成。如T(M),S(M).
|M|=n,则T(M)=n^n,S(M)=n!,M上总共有n^(n^2)种代数变换。
运算律:
结合律 :
集 合 M 上 的 代 数 运 算o , 对 集 合 上 任 意 三 个 元 素a,b,c , 都有以下等式成立:
ao(boc)=(aob)oc
那么, 我们称此代数运算o 满足结合律。
不是所有运算都有结合律。但变换乘法(就是以一个集合上的变换为元素的乘法,也就是变换的嵌套)有。
集合M, 如果其上的代数运算o满足结合律,则对M上任 意n(n>=3)个元素无论如何加括号, 其结果都一样。
交换律:
o是集合M上的代数运算 ,
如果对于任意的a,b,都有aob=boa,
那么, 就称这个代数运算满足交换律。
集合M上的代数运算 ,若它既满足结合律又满足交换律, 那么任意的n个集合中的元素任意的结合(加括号)和交 换位置的前后顺序,其所得的结果都一样。
(就是结果只看参与元素的意思)
分配律:
如乘法和加法。