卷积核的理解

本文详细解释了卷积神经网络中卷积核的作用和工作原理。内容指出,卷积核的维度控制输出特征层大小,而其通道数会自动匹配输入数据的通道数。通过反向传播,卷积核的权重得以更新。举例说明了在多通道和单通道输入情况下,卷积核如何产生不同通道的特征层,强调了不同内容的卷积核作为不同特征提取器的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.注意

  1. 内容不同的卷积核就是不同的特征提取器。
  2. tf.Conv2D()中的第一个参数filiter指的是输出卷积特征层维度大小,数据输出想升维降维都从此处控制。千万注意:该参数与卷积核通道数无关。
  3. 卷积核的通道数(深度)自动与输入数据通道数相等。(例:红圈处的特征层为128,则作用在此特征层的卷积核深度也为128。)
    卷积特征层

1.在程序中如何起作用

卷积核的值可以看成全连接层的w1,w2。。。。利用反向传播将其推算出。
卷积核

例1:输入为多通道

条件:输入的channel为16,但此时要输出一个channel为15的数据。
操作:在tf.Conv2D()中设置第一个参数为15。
系统运行时:卷积核16个channel的值变换15次,每次变换后卷积核16个通道为各自对应的通道进行卷积,最后将这16个通道的结果矩阵做加法再加上bias输出1个通道的卷积特征层,变换15次输出15个通道的卷积特征层。
多层卷积

例2:输入为单通道

在输入图像通道为1时,假设我们在tf.Conv2D()要求它输出一个16channel的卷积特征层。此时系统提供的是一个1通道的卷积核,在程序运行中一个1通道卷积核的内容变换了16次,每变换一次内容输出一个通道的卷积特征层(内容不同的卷积核就是不同的特征提取器)从而保证输出16个channel卷积特征层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值