0.注意
- 内容不同的卷积核就是不同的特征提取器。
- tf.Conv2D()中的第一个参数filiter指的是输出卷积特征层维度大小,数据输出想升维降维都从此处控制。千万注意:该参数与卷积核通道数无关。
- 卷积核的通道数(深度)自动与输入数据通道数相等。(例:红圈处的特征层为128,则作用在此特征层的卷积核深度也为128。)
1.在程序中如何起作用
卷积核的值可以看成全连接层的w1,w2。。。。利用反向传播将其推算出。
例1:输入为多通道
条件:输入的channel为16,但此时要输出一个channel为15的数据。
操作:在tf.Conv2D()中设置第一个参数为15。
系统运行时:卷积核16个channel的值变换15次,每次变换后卷积核16个通道为各自对应的通道进行卷积,最后将这16个通道的结果矩阵做加法再加上bias输出1个通道的卷积特征层,变换15次输出15个通道的卷积特征层。
例2:输入为单通道
在输入图像通道为1时,假设我们在tf.Conv2D()要求它输出一个16channel的卷积特征层。此时系统提供的是一个1通道的卷积核,在程序运行中一个1通道卷积核的内容变换了16次,每变换一次内容输出一个通道的卷积特征层(内容不同的卷积核就是不同的特征提取器)从而保证输出16个channel卷积特征层。