对于如下方程组:
2x-y=0
-x+2y=3
我们熟知的矩阵形式Ax=b为
1、从行的角度来看方程(row picture)
则一次取一行,作图于xy平面,这是我们对方程组熟悉的理解方式,交点即为方程解
2、从列的角度看待方程(column picture)
则方程组变成形式,即求解怎样将向量
和向量
进行组合得到向量
从列的角度去理解方程组的求解是很重要的!!这也是线性代数的精髓所在。
有一个很重要的问题,对于任意b,是否都能求解Ax=b,用列的角度看待方程,这个问题即列的线性组合是否能覆盖整个空间?很明显这跟A矩阵有很大的关系,如果A是非奇异阵,这样才能组合出所有的b,以一个三方程三未知数的方程组来理解,如果系数矩阵A的3个列向量在一个平面上,那么由他们组合出的所有向量都在那个平面上,在那个平面之外的所有b都是无法得到的,这就造成方程无解。