这是转载哈,这个求向心加速度非常巧妙,观之茅塞顿开。感谢香蕉吃了蛇
原贴链接为 https://zhuanlan.zhihu.com/p/483188685
高中物理课本《曲线运动》一章中给出了向心加速度的计算公式 或
,但并没有给出推导方法。然而,向心加速度公式的推导可谓“条条大路通罗马”,是一个十分有趣的数学问题,无论是通过三角、向量、解析几何还是极限、微积分等高等数学方法都可以进行求解,在此整理几个最为简便的方法供大家参考。
一、极限+相似三角形
设圆周的半径为,物体从A点开始做匀速圆周运动,当转过的弧度为
时,到达B点,轨迹长为
割线长为
由于物体线速度方向总与半径垂直,作以出末速度为边的矢量三角形,不难发现相似三角形
易得
当 时 ,
,则
所以
因为 ,
所以
即
二、微积分
设物体角速度为 ,则
时刻转过的角度为
将每个时刻物体的加速度和线速度沿轴方向分解
设 时刻加速度的x轴方向分量为
则
tt 时刻线速度的x轴方向分量的变化量
由 得
三、换系
由于加速度和线速度方向始终垂直,周期相同
我们不妨令线速度矢量的起点为定点,加速度做以线速度为半径的“圆周运动”
则有
又因为周期 与原周期相同
所以
所以