球面面积的积分推导

最近鬼事神差的去重温大学物理,导致必须先去捡微积分的知识,想起求球表面积的积分推导,在B站上也看到求表面积的视频,他们都是先求球体体积,再求表面积,我觉得有点绕远求近了,所以我自己写了一点直接球表面积积分的推导,聊以记录。

下面这个图我花了好久时间画的。

接下来说一下我的微分思路:

半圆沿球体轴线绕行一周形成球体。取半圆绕行α角度形成的形状S进行研究,取S表面角度为θ的绿色部分进行研究。

         当α和θ在微分领域后,变成dα和dθ,微分面积dS = Rad*\theta *R d\theta

         Rad的求取如最后一张图所示,R在α角平面的投影长度为R*sinθ,而轴线上α角平面的扇形区域对应的弧度Rad =d\alpha *R*sin\theta,由于Rad最大处对应的是赤道上的弧度,南北半对称,取北半进行积分。

对θ积分有:S = 2*\int_{0}^{\pi/2}d\alpha *R*sin\theta *R*\theta d\theta =2d\alpha R^{2}*\int_{0}^{\pi/2}sin\theta *\theta d\theta 

积分结果是 S =2*R^{2}d\alpha

对α积分有:S = \int_{0}^{2\pi }2*R^{2}d\alpha = 2R^{2} \int_{0}^{2\pi }d\alpha ,积分结果是 S = 4\pi R^{2}

至此推导结束。

望诸君共勉!

球面坐标系下的积分是一种常见的数学计算方法,尤其适用于涉及三维空间的问题。以下是关于如何在球面坐标系下进行积分的一些关键点和具体方法: --- ### 方法一:理解球面坐标的定义 球面坐标由三个参数组成:径向距离 $r$、极角 $\theta$ 和方位角 $\phi$。 它们与直角坐标的关系如下: $$x = r \sin\theta \cos\phi$$ $$y = r \sin\theta \sin\phi$$ $$z = r \cos\theta$$ 体积元素在球面坐标系中表示为: $$dV = r^2 \sin\theta \, dr \, d\theta \, d\phi$$ 这表明,在球面坐标系下进行三重积分时需要考虑这个额外的因子。 --- ### 方法二:设定积分范围 对于一个完整的体,通常取值范围为: - 径向距离 $r$: 从0到半径R; - 极角 $\theta$: 从0到$\pi$; - 方位角 $\phi$: 从0到$2\pi$。 例如,若要计算单位内的体积,则可以设置以下积分: $$\int_0^{2\pi} \int_0^\pi \int_0^1 r^2 \sin\theta \, dr \, d\theta \, d\phi$$ --- ### 方法三:实际应用中的例子 以求解函数$f(r,\theta,\phi)$在一个形区域上的积分为例,其形式化表达为: $$I = \iiint_V f(r,\theta,\phi) \cdot r^2 \sin\theta \, dr \, d\theta \, d\phi$$ #### 示例代码实现 (Python) ```python import numpy as np from scipy.integrate import tplquad def integrand(phi, theta, r): # 定义被积函数f(r, θ, φ),这里我们选择简单的常数函数1为例 return r**2 * np.sin(theta) # 设定积分限 result, error = tplquad(integrand, 0, 1, lambda r: 0, lambda r: np.pi, lambda r, theta: 0, lambda r, theta: 2*np.pi) print(f"Integral result: {result}, Error estimate: {error}") ``` 此段代码实现了对单位内体积的积分计算。 --- ### 注意事项 确保正确转换边界条件至球面坐标系统;检查是否所有角度都覆盖完整周期(即避免遗漏某些特定方向)。同时也要留意不同物理场景可能带来的特殊约束或者简化情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值