0. 前言
我们已经学习了如何构建生成对抗网络 (Generative Adversarial Net, GAN) 以从给定的训练集中生成逼真图像。但是,我们无法控制想要生成的图像类型,例如控制模型生成男性或女性的面部图像;我们可以从潜空间中随机采样一个点,但是不能预知给定潜变量能够生成什么样的图像。在本节中,我们将构建一个能够控制输出的 GAN
,即条件生成对抗网络 (Conditional Generative Adversarial Net
, GAN
)。该模型最早由 Mirza
和 Osindero
在 2014
年提出,是对 GAN
架构的简单改进。
1. CGAN架构
在本节中,我们将使用面部数据集中的头发颜色属性来设置 CGAN
的条件。也就是说,我们将能够明确指定是否要生成带有金发的图像。头发颜色标签作为 CelebA
数据集的一部分已在数